All BASICSTANDARDADVANCED

Question(s) from Search: IIT

Search Results Difficulty Solution
1226

Using mathematical induction, prove that

 for n > 1

Using mathematical induction, prove that

 for n > 1

IIT 1986
1227

If A and B are two independent events such that P (A) > 0 and P (B) ≠ 1 then  is equal to

a)

b)

c)

d)

If A and B are two independent events such that P (A) > 0 and P (B) ≠ 1 then  is equal to

a)

b)

c)

d)

IIT 1980
1228

Let p ≥ 3 be an integer and α, β be the roots of x2 – (p + 1) x + 1 = 0. Using mathematical induction show that αn + βn
i) is an integer
ii) and is not divisible by p.

Let p ≥ 3 be an integer and α, β be the roots of x2 – (p + 1) x + 1 = 0. Using mathematical induction show that αn + βn
i) is an integer
ii) and is not divisible by p.

IIT 1992
1229

Tangents are drawn to the circle  from a point on the hyperbola . Find the locus of the midpoint of the chord of contact.

Tangents are drawn to the circle  from a point on the hyperbola . Find the locus of the midpoint of the chord of contact.

IIT 2005
1230

If x is not an integral multiple of 2π use mathematical induction to prove that
 

If x is not an integral multiple of 2π use mathematical induction to prove that
 

IIT 1994
1231

Let P (x1, y1) and Q (x2, y2), y1 < 0, y2 < 0 be the end points of the latus rectum of the ellipse x2 + 4y2 = 4. The equations of the parabolas with latus rectum PQ are

a)

b)

c)

d)

Let P (x1, y1) and Q (x2, y2), y1 < 0, y2 < 0 be the end points of the latus rectum of the ellipse x2 + 4y2 = 4. The equations of the parabolas with latus rectum PQ are

a)

b)

c)

d)

IIT 2008
1232

Prove by induction that
Pn = Aαn + Bβn for all n ≥ 1
Where α and β are roots of the quadratic equation
x2 – (1 – P) x – P (1 – P) = 0,
P1 = 1, P2 = 1 – P2, .  .  .,
Pn = (1 – P) Pn – 1 + P (1 – P) Pn – 2  n ≥ 3,
and ,

Prove by induction that
Pn = Aαn + Bβn for all n ≥ 1
Where α and β are roots of the quadratic equation
x2 – (1 – P) x – P (1 – P) = 0,
P1 = 1, P2 = 1 – P2, .  .  .,
Pn = (1 – P) Pn – 1 + P (1 – P) Pn – 2  n ≥ 3,
and ,

IIT 2000
1233

Consider the points
P: (−sin (β – α), cosβ)
Q: (cos (β – α), sinβ)
R: (−cos{(β – α) + θ}, sin (β – θ))
where 0 < α, β, θ <  then

a) P lies on the line segment RQ

b) Q lies on the line segment PR

c) R lies on the line segment QP

d) P, Q, R are non–collinear

Consider the points
P: (−sin (β – α), cosβ)
Q: (cos (β – α), sinβ)
R: (−cos{(β – α) + θ}, sin (β – θ))
where 0 < α, β, θ <  then

a) P lies on the line segment RQ

b) Q lies on the line segment PR

c) R lies on the line segment QP

d) P, Q, R are non–collinear

IIT 2008
1234

If the integers m and n are chosen at random between 1 and 100 then the probability that a number of form  is divisible by 5, equals

a)

b)

c)

d)

If the integers m and n are chosen at random between 1 and 100 then the probability that a number of form  is divisible by 5, equals

a)

b)

c)

d)

IIT 1999
1235

Find all solutions of

a)

b)

c)

d)

Find all solutions of

a)

b)

c)

d)

IIT 1983
1236

(One or more correct answers)
Let 0 < P (A) < 1, 0 < P (B) < 1 and P (A ∪ B) = P (A) + P (B) – P (A ∩ B) then

a) P (B/A) = P (B) – P (A)

b) P (Aʹ – Bʹ) = P (Aʹ) – P (Bʹ)

c) P (A U B)ʹ = P (Aʹ) P (Bʹ)

d) P (A/B) = P (A)

(One or more correct answers)
Let 0 < P (A) < 1, 0 < P (B) < 1 and P (A ∪ B) = P (A) + P (B) – P (A ∩ B) then

a) P (B/A) = P (B) – P (A)

b) P (Aʹ – Bʹ) = P (Aʹ) – P (Bʹ)

c) P (A U B)ʹ = P (Aʹ) P (Bʹ)

d) P (A/B) = P (A)

IIT 1995
1237

The smallest positive integer n for which  is

a) 8

b) 12

c) 12

d) None of these

The smallest positive integer n for which  is

a) 8

b) 12

c) 12

d) None of these

IIT 1980
1238

In a triangle ABC, let ∠ C = . If r is the inradius and R is the circumradius of the triangle then 2(r+R) = ………….

a) a+b

b) b+c

c) c+a

d) a+b+c

In a triangle ABC, let ∠ C = . If r is the inradius and R is the circumradius of the triangle then 2(r+R) = ………….

a) a+b

b) b+c

c) c+a

d) a+b+c

IIT 2000
1239

If z = x + iy and ω =  then |ω| =1 implies that in the complex plane

a) z lies on the imaginary axis

b) z lies on the real axis

c) z lies on unit circle

d) none of these

If z = x + iy and ω =  then |ω| =1 implies that in the complex plane

a) z lies on the imaginary axis

b) z lies on the real axis

c) z lies on unit circle

d) none of these

IIT 1983
1240

Show that the value of  wherever defined

a) always lies between  and 3

b) never lies between  and 3

c) depends on the value of x

Show that the value of  wherever defined

a) always lies between  and 3

b) never lies between  and 3

c) depends on the value of x

IIT 1992
1241

The orthocenter of the triangle formed by the lines
  lies in the quadrant number . . . . .

The orthocenter of the triangle formed by the lines
  lies in the quadrant number . . . . .

IIT 1985
1242

Fill in the blank

The value of f (x) =  lies in the interval …………….

a)

b)

c)

d)

Fill in the blank

The value of f (x) =  lies in the interval …………….

a)

b)

c)

d)

IIT 1983
1243

Let  and  intersect the line
 at P and Q respectively. Bisector of the acute angle between L1 and L2 intersects L3 in R.
Statement 1 – The ratio PR : RQ equals  because
Statement 2 – In any triangle, bisector of an angle divides the triangle into two similar triangles.
The question contains Statement 1(assertion) and Statement 2(reason). Of these statements, mark correct choice if

a) Statement 1 and 2 are true. Statement 2 is a correct explanation for statement 1.

b) Statement 1 and 2 are true. Statement 2 is not a correct explanation for statement 1.

c) Statement 1 is true. Statement 2 is false.

d) Statement 1 is false. Statement 2 is true.

Let  and  intersect the line
 at P and Q respectively. Bisector of the acute angle between L1 and L2 intersects L3 in R.
Statement 1 – The ratio PR : RQ equals  because
Statement 2 – In any triangle, bisector of an angle divides the triangle into two similar triangles.
The question contains Statement 1(assertion) and Statement 2(reason). Of these statements, mark correct choice if

a) Statement 1 and 2 are true. Statement 2 is a correct explanation for statement 1.

b) Statement 1 and 2 are true. Statement 2 is not a correct explanation for statement 1.

c) Statement 1 is true. Statement 2 is false.

d) Statement 1 is false. Statement 2 is true.

IIT 2007
1244

Show, by vector method, that the angular bisectors of a triangle are concurrent and find an expression for the position vector of point of concurrency in terms of position vectors of the vertices.

Show, by vector method, that the angular bisectors of a triangle are concurrent and find an expression for the position vector of point of concurrency in terms of position vectors of the vertices.

IIT 2001
1245

If AB is a diameter of a circle and C is any point on the circumference of the circle then

a) The area of ΔABC is maximum when it is isosceles

b) The area of ΔABC is minimum when it is isosceles

c) The perimeter of ΔABC is minimum when it is isosceles

d) None of these

If AB is a diameter of a circle and C is any point on the circumference of the circle then

a) The area of ΔABC is maximum when it is isosceles

b) The area of ΔABC is minimum when it is isosceles

c) The perimeter of ΔABC is minimum when it is isosceles

d) None of these

IIT 1983
1246

Let a > 0, b > 0, c > 0 then both the roots of the equation  

a) are real and positive

b) have negative real parts

c) have positive real parts

d) none of these

Let a > 0, b > 0, c > 0 then both the roots of the equation  

a) are real and positive

b) have negative real parts

c) have positive real parts

d) none of these

IIT 1979
1247

If sinA sinB sinC + cosA cosB = 1then the value of sinC is

If sinA sinB sinC + cosA cosB = 1then the value of sinC is

IIT 2006
1248

A plane passes through (1, −2, 1) and is perpendicular to the two planes  and  The distance of the plane from the point (1, 2, 2) is.

A plane passes through (1, −2, 1) and is perpendicular to the two planes  and  The distance of the plane from the point (1, 2, 2) is.

IIT 2006
1249

Let f and g be increasing and decreasing functions, respectively from [0, ∞) to [0, ∞). Let h(x) =f(g(x)). If h(0) = 0 then h(x) – h(t) is

a) Always zero

b) Always negative

c) Always positive

d) Strictly increasing

e) None of these

Let f and g be increasing and decreasing functions, respectively from [0, ∞) to [0, ∞). Let h(x) =f(g(x)). If h(0) = 0 then h(x) – h(t) is

a) Always zero

b) Always negative

c) Always positive

d) Strictly increasing

e) None of these

IIT 1988
1250

On the interval [0, 1] the function  takes the maximum value at the point

a) 0

b)

c)

d)

On the interval [0, 1] the function  takes the maximum value at the point

a) 0

b)

c)

d)

IIT 1995

Play Selected  Login to save this search...