All BASICSTANDARDADVANCED

Question(s) from Search: IIT

Search Results Difficulty Solution
126

If k =  then the numerical value of k is ……….

a)

b)

c)

d)

If k =  then the numerical value of k is ……….

a)

b)

c)

d)

IIT 1993
02:32 min
127

If  then

tan

a) True

b) False

If  then

tan

a) True

b) False

IIT 1979
01:42 min
128

In a triangle ABC, angle A is greater than angle B. If the measures of angle A and B satisfy the equation , then the measure of angle C is

a)

b)

c)

d)

In a triangle ABC, angle A is greater than angle B. If the measures of angle A and B satisfy the equation , then the measure of angle C is

a)

b)

c)

d)

IIT 1990
01:43 min
129

Prove that C0 – 22C1 + 32C2 − .  .  .  + (−)n  (n + 1)2 Cn = 0 for n > 2 where

Prove that C0 – 22C1 + 32C2 − .  .  .  + (−)n  (n + 1)2 Cn = 0 for n > 2 where

IIT 1989
05:31 min
130

The maximum value of cos1 cos2 cos3 …… cosnunder the restriction 0  1 , 2 , 3 …. , n   and cot1 cot2 cot3 …… cotn= 1 is

a)

b)

c)

d)

The maximum value of cos1 cos2 cos3 …… cosnunder the restriction 0  1 , 2 , 3 …. , n   and cot1 cot2 cot3 …… cotn= 1 is

a)

b)

c)

d)

IIT 2001
03:43 min
131

Let   are the perpendiculars from the vertices of a triangle to the opposite sides, then  

a) True

b) False

Let   are the perpendiculars from the vertices of a triangle to the opposite sides, then  

a) True

b) False

IIT 1978
02:41 min
132

The coefficient of x99 in the polynomial
(x – 1) (x – 2) .  .  . (x – 100) is

The coefficient of x99 in the polynomial
(x – 1) (x – 2) .  .  . (x – 100) is

IIT 1982
02:12 min
133

The sum of the rational terms in the expansion of  is

The sum of the rational terms in the expansion of  is

IIT 1997
03:13 min
134

Which of the following functions is periodic?

a) f(x) = x – [x] where [x] denotes the greatest integer less than or equal to the real number x

b) f(x) = sin  x ≠ 0, f(0) = 0

c) f(x) = x cos x

d) None of these

Which of the following functions is periodic?

a) f(x) = x – [x] where [x] denotes the greatest integer less than or equal to the real number x

b) f(x) = sin  x ≠ 0, f(0) = 0

c) f(x) = x cos x

d) None of these

IIT 1983
01:19 min
135

Let f (x) be defined for all x > 0 and be continuous. If f (x) satisfies
f  = f (x) – f (y) for all x and y and f (e) = 1 then

a) f (x) is bounded

b) f  → 0 as x → 0

c) x f  → 0 as x → 0

d) f (x) = lnx

Let f (x) be defined for all x > 0 and be continuous. If f (x) satisfies
f  = f (x) – f (y) for all x and y and f (e) = 1 then

a) f (x) is bounded

b) f  → 0 as x → 0

c) x f  → 0 as x → 0

d) f (x) = lnx

IIT 1995
02:06 min
136

There exists a solution of θ between 0 and 2π that satisfies the equation .

a) True

b) False

There exists a solution of θ between 0 and 2π that satisfies the equation .

a) True

b) False

IIT 1980
02:16 min
137

The number of values of x where the function
f (x) = cos x + cos () attains the maximum is

a) 0

b) 1

c) 2

d) Infinite

The number of values of x where the function
f (x) = cos x + cos () attains the maximum is

a) 0

b) 1

c) 2

d) Infinite

IIT 1998
01:38 min
138

The domain of definition of the function f (x) given by the equation

2x + 2y = 2 is

a) 0 < x ≤ 1

b) 0 ≤ x ≤ 1

c)  < x ≤ 0

d)  < x ≤ 1

The domain of definition of the function f (x) given by the equation

2x + 2y = 2 is

a) 0 < x ≤ 1

b) 0 ≤ x ≤ 1

c)  < x ≤ 0

d)  < x ≤ 1

IIT 2000
01:23 min
139

If we consider only the principal values of the inverse trigonometric functions then the value of

 is

a)

b)

c)

d)

If we consider only the principal values of the inverse trigonometric functions then the value of

 is

a)

b)

c)

d)

IIT 1994
02:29 min
140

Let g (x) = 1 + x – [ x ] and f (x) =  then for all x,
f (g (x)) is equal to

a) x

b) 1

c) f ( x )

d) g ( x )

Let g (x) = 1 + x – [ x ] and f (x) =  then for all x,
f (g (x)) is equal to

a) x

b) 1

c) f ( x )

d) g ( x )

IIT 2001
01:01 min
141

Find the value of  at  where
.

a) 1

b)

c)

d)

Find the value of  at  where
.

a) 1

b)

c)

d)

IIT 1981
03:44 min
142

Multiple choices

Let g (x) be a function defined on [−1, 1]. If the area of the equilateral triangle with the area of its vertices at ( 0, 0) and ( x, g (x)) is  then the function g (x) is

a) g (x) =

b) g (x) =

c) g (x) =

d) g (x) =

Multiple choices

Let g (x) be a function defined on [−1, 1]. If the area of the equilateral triangle with the area of its vertices at ( 0, 0) and ( x, g (x)) is  then the function g (x) is

a) g (x) =

b) g (x) =

c) g (x) =

d) g (x) =

IIT 1984
02:26 min
143

Which one of the following is true in a triangle ABC?

a)

b)

c)

d)

Which one of the following is true in a triangle ABC?

a)

b)

c)

d)

IIT 2005
02:45 min
144

Given A =  and f (x) = cosx – x (x + 1). Find the range of f (A).

a)

b)

c)

d)

Given A =  and f (x) = cosx – x (x + 1). Find the range of f (A).

a)

b)

c)

d)

IIT 1980
02:20 min
145

Let the angles A, B, C of Δ ABC be in arithmetic progression and
b : c = . Find the angle A.

a)

b)

c)

d)

Let the angles A, B, C of Δ ABC be in arithmetic progression and
b : c = . Find the angle A.

a)

b)

c)

d)

IIT 1981
03:05 min
146

Let ABC be a triangle such that
 

If A, B, C are in arithmetic progression, determine the values of A, B, C.

a) 30°, 60°, 90°

b) 30°, 75°, 75°

c) 45°, 60°, 75°

d) 60°, 60°, 60°

Let ABC be a triangle such that
 

If A, B, C are in arithmetic progression, determine the values of A, B, C.

a) 30°, 60°, 90°

b) 30°, 75°, 75°

c) 45°, 60°, 75°

d) 60°, 60°, 60°

IIT 1990
02:17 min
147

If f (x) =  and  

then (gof)(x) = …………

a) 0

b) 1

c) 2

d) 3

If f (x) =  and  

then (gof)(x) = …………

a) 0

b) 1

c) 2

d) 3

IIT 1996
03:24 min
148

The largest interval for which  is

a)

b)

c)

d)

The largest interval for which  is

a)

b)

c)

d)

IIT 1982
04:35 min
149

The equation  has

a) No root

b) One root

c) Two equal roots

d) Infinitely many roots

The equation  has

a) No root

b) One root

c) Two equal roots

d) Infinitely many roots

IIT 1984
01:04 min
150

Let a, b, c be real numbers, a ≠ 0. If α is a root of β is a root of  and 0 < α < β then the equation  has a root γ that always satisfies

a) γ =

b) γ =

c) γ = α

d) α < γ < β

Let a, b, c be real numbers, a ≠ 0. If α is a root of β is a root of  and 0 < α < β then the equation  has a root γ that always satisfies

a) γ =

b) γ =

c) γ = α

d) α < γ < β

IIT 1989
03:43 min

Play Selected  Login to save this search...