|
1301 |
Let A be a set of n distinct elements. Then find the total number of distinct functions from A to A is and out of these onto functions are . . .
Let A be a set of n distinct elements. Then find the total number of distinct functions from A to A is and out of these onto functions are . . .
|
IIT 1985 |
|
|
1302 |
is equal to a) b) c) d)
is equal to a) b) c) d)
|
IIT 2016 |
|
|
1303 |
(One or more correct answers) For any two events in the sample space a) is always true b) does not hold c) if A and B are independent d) if A and B are disjoint
(One or more correct answers) For any two events in the sample space a) is always true b) does not hold c) if A and B are independent d) if A and B are disjoint
|
IIT 1991 |
|
|
1304 |
Match the following Let the function defined in column 1 have domain and range (−∞ ∞) | Column1 | Column2 | | i) 1+2x | A) Onto but not one – one | | ii) tanx | B) One to one but not onto | | | C) One to one and onto | | | D) Neither one to one nor onto |
Match the following Let the function defined in column 1 have domain and range (−∞ ∞) | Column1 | Column2 | | i) 1+2x | A) Onto but not one – one | | ii) tanx | B) One to one but not onto | | | C) One to one and onto | | | D) Neither one to one nor onto |
|
IIT 1992 |
|
|
1305 |
Let a, b, c be real numbers such that Then ax2 + bx + c = 0 has a) No root in (0, 2) b) At least one root in (0, 2) c) A double root in (0, 2) d) Two imaginary roots
Let a, b, c be real numbers such that Then ax2 + bx + c = 0 has a) No root in (0, 2) b) At least one root in (0, 2) c) A double root in (0, 2) d) Two imaginary roots
|
IIT 1981 |
|
|
1306 |
The area of the region is a) b) c) d)
The area of the region is a) b) c) d)
|
IIT 2017 |
|
|
1307 |
The total number of local maximum and minimum of the function  is a) 0 b) 1 c) 2 d) 3
The total number of local maximum and minimum of the function  is a) 0 b) 1 c) 2 d) 3
|
IIT 2008 |
|
|
1308 |
The area enclosed by the curve y = sinx + cosx and y = |cosx – sinx| over the interval is a) b) c) d)
The area enclosed by the curve y = sinx + cosx and y = |cosx – sinx| over the interval is a) b) c) d)
|
IIT 2014 |
|
|
1309 |
If and bn = 1 – an then find the least natural number n0 such that bn > an for all n ≥ n0
If and bn = 1 – an then find the least natural number n0 such that bn > an for all n ≥ n0
|
IIT 2006 |
|
|
1310 |
If are unit coplanar vectors then the scalar triple product a) 0 b) 1 c)  d) 
If are unit coplanar vectors then the scalar triple product a) 0 b) 1 c)  d) 
|
IIT 2000 |
|
|
1311 |
One or more than one correct option If the line x = α divides the area of the region R = {(x, y) ∈ ℝ2 : x3 ≤ y ≤ x, 0 ≤ x ≤ 1 into two equal parts then a) b) c) d)
One or more than one correct option If the line x = α divides the area of the region R = {(x, y) ∈ ℝ2 : x3 ≤ y ≤ x, 0 ≤ x ≤ 1 into two equal parts then a) b) c) d)
|
IIT 2017 |
|
|
1312 |
The sides of a triangle inscribed in a given circle subtend angles α, β and γ at the centre. The minimum value of the Arithmetic mean of
The sides of a triangle inscribed in a given circle subtend angles α, β and γ at the centre. The minimum value of the Arithmetic mean of
|
IIT 1987 |
|
|
1313 |
The value of a) b) c) d)
The value of a) b) c) d)
|
IIT 2016 |
|
|
1314 |
Let y(x) be the solution of the differential equation . Given that y = 1 when x = 1, then y(e) is equal to a) e b) 0 c) 2 d) 2e
Let y(x) be the solution of the differential equation . Given that y = 1 when x = 1, then y(e) is equal to a) e b) 0 c) 2 d) 2e
|
IIT 2015 |
|
|
1315 |
If Cr stands for then the sum of the series where n is a positive integer, is equal to a) 0 b) (−)n/2(n + 1) c) (−)n/2 (n + 2) d) None of these
If Cr stands for then the sum of the series where n is a positive integer, is equal to a) 0 b) (−)n/2(n + 1) c) (−)n/2 (n + 2) d) None of these
|
IIT 1986 |
|
|
1316 |
Let T > 0 be a fixed real number. Suppose f is a continuous function such that for all x ℝ, f(x + T) = f(x). If then the value of is a)  b)  c) 3I d) 6I
Let T > 0 be a fixed real number. Suppose f is a continuous function such that for all x ℝ, f(x + T) = f(x). If then the value of is a)  b)  c) 3I d) 6I
|
IIT 2002 |
|
|
1317 |
One or more than one correct options If y(x) satisfies the differential equation y′ − ytanx = 2xsecx and y(0) = 0, then a) b) c) d)
One or more than one correct options If y(x) satisfies the differential equation y′ − ytanx = 2xsecx and y(0) = 0, then a) b) c) d)
|
IIT 2012 |
|
|
1318 |
The sum if p > q is maximum when m is a) 5 b) 10 c) 15 d) 20
The sum if p > q is maximum when m is a) 5 b) 10 c) 15 d) 20
|
IIT 2002 |
|
|
1319 |
At present a firm is manufacturing 2000 items. It is estimated that the rate of change of production P with respect to additional number of workers x is given by . If the firm employs 25 more workers then the new level of production of items is a) 2500 b) 3000 c) 3500 d) 4500
At present a firm is manufacturing 2000 items. It is estimated that the rate of change of production P with respect to additional number of workers x is given by . If the firm employs 25 more workers then the new level of production of items is a) 2500 b) 3000 c) 3500 d) 4500
|
IIT 2013 |
|
|
1320 |
If a, b, c; u, v, w are complex numbers representing the vertices of two triangles such that c = (1 − r)a + rb, w = (1 − r)u + rv where r is a complex number. The two triangles a) have the same area b) are similar c) are congruent d) none of these
If a, b, c; u, v, w are complex numbers representing the vertices of two triangles such that c = (1 − r)a + rb, w = (1 − r)u + rv where r is a complex number. The two triangles a) have the same area b) are similar c) are congruent d) none of these
|
IIT 1985 |
|
|
1321 |
Prove that
Prove that
|
IIT 1979 |
|
|
1322 |
The question contains Statement – 1(assertion) and Statement – 2 (reason). Let f (x) = 2 + cosx for all real x. Statement 1: For each real t, there exists a point c in [t, t + π] such that because Statement 2: f (t) = f[t, t + 2π] for each real t a) Statement 1 and 2 are true. Statement 2 is a correct explanation of Statement 1. b) Statement 1 and 2 are true. Statement 2 is not a correct explanation of Statement 1. c) Statement 1 is true and Statement 2 is false. d) Statement 1 is false. Statement 2 is true.
The question contains Statement – 1(assertion) and Statement – 2 (reason). Let f (x) = 2 + cosx for all real x. Statement 1: For each real t, there exists a point c in [t, t + π] such that because Statement 2: f (t) = f[t, t + 2π] for each real t a) Statement 1 and 2 are true. Statement 2 is a correct explanation of Statement 1. b) Statement 1 and 2 are true. Statement 2 is not a correct explanation of Statement 1. c) Statement 1 is true and Statement 2 is false. d) Statement 1 is false. Statement 2 is true.
|
IIT 2007 |
|
|
1323 |
Let f(x) = (1 – x)2 sin2x + x2 and Which of the following is true? a) g is increasing on (1, ∞) b) g is decreasing on (1, ∞) c) g is increasing on (1, 2) and decreasing on (2, ∞) d) g is decreasing on (1, 2) and increasing on (2, ∞)
Let f(x) = (1 – x)2 sin2x + x2 and Which of the following is true? a) g is increasing on (1, ∞) b) g is decreasing on (1, ∞) c) g is increasing on (1, 2) and decreasing on (2, ∞) d) g is decreasing on (1, 2) and increasing on (2, ∞)
|
IIT 2013 |
|
|
1324 |
Use mathematical induction to prove: If n is an odd positive integer then is divisible by 24.
Use mathematical induction to prove: If n is an odd positive integer then is divisible by 24.
|
IIT 1983 |
|
|
1325 |
Let PS is the median of the triangle with vertices P(2, 2), Q(6, −1) and R(7, 3), then the equation of the line passing through (1, −1) and parallel to PS is a) 4x – 7y – 11 = 0 b) 2x + 9y + 7 = 0 c) 4x + 7y + 3 = 0 d) 2x – 9y – 11 = 0
Let PS is the median of the triangle with vertices P(2, 2), Q(6, −1) and R(7, 3), then the equation of the line passing through (1, −1) and parallel to PS is a) 4x – 7y – 11 = 0 b) 2x + 9y + 7 = 0 c) 4x + 7y + 3 = 0 d) 2x – 9y – 11 = 0
|
IIT 2014 |
|