All BASICSTANDARDADVANCED

Question(s) from Search: IIT

Search Results Difficulty Solution
1301

Find the values of a and b, so that the functions

 

Is continuous for 0 ≤ x ≤ π

a)

b)

c)

d)

Find the values of a and b, so that the functions

 

Is continuous for 0 ≤ x ≤ π

a)

b)

c)

d)

IIT 1989
1302

C1 and C2 are two concentric circles, the radius of C2 being twice of C1 . From a point on C2 tangents PA and PB are drawn to C1. Prove that the centroid of ΔPAB lies on C1.

C1 and C2 are two concentric circles, the radius of C2 being twice of C1 . From a point on C2 tangents PA and PB are drawn to C1. Prove that the centroid of ΔPAB lies on C1.

IIT 1998
1303

In [0, 1], Lagrange’s Mean Value theorem is not applicable to

a)

b)

c)

d)

In [0, 1], Lagrange’s Mean Value theorem is not applicable to

a)

b)

c)

d)

IIT 2003
1304

Let α ε ℝ, then a function f : ℝ → ℝ is differentiable at α if and only if there is a function g : ℝ → ℝ which is continuous at α and satisfies f(x) – f(α) = g(x) (x – α) for all x ε ℝ.

a) True

b) False

Let α ε ℝ, then a function f : ℝ → ℝ is differentiable at α if and only if there is a function g : ℝ → ℝ which is continuous at α and satisfies f(x) – f(α) = g(x) (x – α) for all x ε ℝ.

a) True

b) False

IIT 2001
1305

The area bounded by the angle bisectors of the lines

x2 – y2 + 2y = 1 and the line x + y = 3 is

a) 2

b) 3

c) 4

d) 6

The area bounded by the angle bisectors of the lines

x2 – y2 + 2y = 1 and the line x + y = 3 is

a) 2

b) 3

c) 4

d) 6

IIT 2004
1306

If two functions f and g satisfy the given conditions  x, y ε ℝ, f(x – y) = f(x)g(y) – f(y)g(x) and g(x – y) = g(x) . g(y) + f(x) . f(y).

If the RHD at x = 0 exists for f(x) then find the derivative of g(x) at x = 0.

If two functions f and g satisfy the given conditions  x, y ε ℝ, f(x – y) = f(x)g(y) – f(y)g(x) and g(x – y) = g(x) . g(y) + f(x) . f(y).

If the RHD at x = 0 exists for f(x) then find the derivative of g(x) at x = 0.

IIT 2005
1307

Let

be a real valued function. The set of points where f(x) is not differentiable are

a) {0}

b) {1}

c) {0, 1}

d) {∅}

Let

be a real valued function. The set of points where f(x) is not differentiable are

a) {0}

b) {1}

c) {0, 1}

d) {∅}

IIT 1981
1308

Multiple choice

Let  and

 

Then g(x) has

a) Local maximum at x = 1 + ln2 and local minima at x = e

b) Local maximum at x = 1 and local minima at x = 2

c) No local maximas

d) No local minimas

Multiple choice

Let  and

 

Then g(x) has

a) Local maximum at x = 1 + ln2 and local minima at x = e

b) Local maximum at x = 1 and local minima at x = 2

c) No local maximas

d) No local minimas

IIT 2006
1309

For all x in [0, 1], let the second derivative  of a function f(x) exists and satisfies . If f(0) = f(1) then for all x ε [0, 1]

a)  

b)  

c) None of these

For all x in [0, 1], let the second derivative  of a function f(x) exists and satisfies . If f(0) = f(1) then for all x ε [0, 1]

a)  

b)  

c) None of these

IIT 1981
1310

Match the following

Let the function defined in column 1 have domain  and range ()

Column 1

Column 2

i) 1 + 2x

A) Onto but not one-one

ii) tan x

B) One-one but not onto

C) One-one and onto

D) Neither one

Match the following

Let the function defined in column 1 have domain  and range ()

Column 1

Column 2

i) 1 + 2x

A) Onto but not one-one

ii) tan x

B) One-one but not onto

C) One-one and onto

D) Neither one

IIT 1992
1311

Let f(x) = [x] where [.] denotes the greatest integer function. Then the domain of f is .  .  .  ., points of discontinuity of f are .  .  .  .

a) ∀ x ε I

b) ∀ x ε I − {0}

c) ∀ x ε I – {0, 1}

d) ∀ x ε I – {0, 1, 2}

Let f(x) = [x] where [.] denotes the greatest integer function. Then the domain of f is .  .  .  ., points of discontinuity of f are .  .  .  .

a) ∀ x ε I

b) ∀ x ε I − {0}

c) ∀ x ε I – {0, 1}

d) ∀ x ε I – {0, 1, 2}

IIT 1996
1312

PQ and PR are two infinite rays, QAR is an arc.

U


Points lying in the shaded region excluding the boundary satisfies

a)   |z + 1| > 2; |arg(z + 1)| <

b)   |z + 1| < 2; |arg(z + 1)| <

c)  

d)  

PQ and PR are two infinite rays, QAR is an arc.

U


Points lying in the shaded region excluding the boundary satisfies

a)   |z + 1| > 2; |arg(z + 1)| <

b)   |z + 1| < 2; |arg(z + 1)| <

c)  

d)  

IIT 2005
1313

If  for all positive x where a > 0 and b > 0 then

a) 9ab2 ≥ 4c3

b) 27ab2 ≥ 4c3

c) 9ab2 ≤ 4c3

d) 27ab2 ≤ 4c3

If  for all positive x where a > 0 and b > 0 then

a) 9ab2 ≥ 4c3

b) 27ab2 ≥ 4c3

c) 9ab2 ≤ 4c3

d) 27ab2 ≤ 4c3

IIT 1989
1314

Let ABCD be a square with side of length 2 units. C2 is the circle through the vertices A, B, C, D and C1 is the circle touching all the sides of the square ABCD. L is a line through A.

If P is a point on C1 and Q is another point on C2, then  is equal to

a) 0.75

b) 1.25

c) 1

d) 0.5

Let ABCD be a square with side of length 2 units. C2 is the circle through the vertices A, B, C, D and C1 is the circle touching all the sides of the square ABCD. L is a line through A.

If P is a point on C1 and Q is another point on C2, then  is equal to

a) 0.75

b) 1.25

c) 1

d) 0.5

IIT 2006
1315

If a continuous function f defined on the real line ℝ, assumes positive and negative values in ℝ then the equation f(x) = 0 has a root in ℝ. For example, it is known that if a continuous function f on ℝ is positive at some points and its minimum value is negative then the equation f(x) = 0 has a root in ℝ. Consider the function f(x) =  for all real x where k is a real constant.

The positive value of k for which  has only one root is

a)

b) 1

c) e

d) ln2

If a continuous function f defined on the real line ℝ, assumes positive and negative values in ℝ then the equation f(x) = 0 has a root in ℝ. For example, it is known that if a continuous function f on ℝ is positive at some points and its minimum value is negative then the equation f(x) = 0 has a root in ℝ. Consider the function f(x) =  for all real x where k is a real constant.

The positive value of k for which  has only one root is

a)

b) 1

c) e

d) ln2

IIT 2007
1316

Let . Find the intervals in which λ should lie in order that f(x) has exactly one minimum and exactly one maximum.

a)

b)

c)

d)

Let . Find the intervals in which λ should lie in order that f(x) has exactly one minimum and exactly one maximum.

a)

b)

c)

d)

IIT 1985
1317

Consider a circle with centre lying on the focus of the parabola  such that it touches the directrix of the parabola. Then a point of intersection of the circle and parabola is

a) or

b)

c)

d)

Consider a circle with centre lying on the focus of the parabola  such that it touches the directrix of the parabola. Then a point of intersection of the circle and parabola is

a) or

b)

c)

d)

IIT 1995
1318

Find the equation of the plane at a distance  from the point  and containing the line
 .

Find the equation of the plane at a distance  from the point  and containing the line
 .

IIT 2005
1319

Let the complex numbers  are vertices of an equilateral triangle. If  be the circumcentre of the triangle, then prove that

Let the complex numbers  are vertices of an equilateral triangle. If  be the circumcentre of the triangle, then prove that

IIT 1981
1320

A two metre long object is fired vertically upwards from the mid-point of two locations A and B, 8 metres apart. The speed of the object after t seconds is given by  metres per second. Let α and β be the angles subtended by the objects A and B respectively after one and two seconds. Find the value of cos(α − β).

a)

b)

c)

d)

A two metre long object is fired vertically upwards from the mid-point of two locations A and B, 8 metres apart. The speed of the object after t seconds is given by  metres per second. Let α and β be the angles subtended by the objects A and B respectively after one and two seconds. Find the value of cos(α − β).

a)

b)

c)

d)

IIT 1989
1321

The point (α, β, γ) lies on the plane .
Let a =  . . . . .

The point (α, β, γ) lies on the plane .
Let a =  . . . . .

IIT 2006
1322

Investigate for maxima and minima the function
 

a) Local maximum at x = 1, 7/5, 2

b) Local minimum at x = 1, 7/5, 2

c) Local maximum at x = 1, 2. Local minimum at x =  7/5

d) Local maximum at x = 1. Local minimum at x =  7/5

Investigate for maxima and minima the function
 

a) Local maximum at x = 1, 7/5, 2

b) Local minimum at x = 1, 7/5, 2

c) Local maximum at x = 1, 2. Local minimum at x =  7/5

d) Local maximum at x = 1. Local minimum at x =  7/5

IIT 1988
1323

Sides a, b, c of a triangle ABC are  in arithmetic progression and  then
 

Sides a, b, c of a triangle ABC are  in arithmetic progression and  then
 

IIT 2006
1324

A window of perimeter (including the base of the arch) is in the form of a rectangle surmounted by a semicircle. The semi-circular portion is fitted with coloured glass while the rectangular part is fitted with clear glass. The clear glass transmits three times as much light per square meter as the coloured glass. What is the ratio for the sides of the rectangle so that the window transmits the maximum light?

a)

b)

c)

d)

A window of perimeter (including the base of the arch) is in the form of a rectangle surmounted by a semicircle. The semi-circular portion is fitted with coloured glass while the rectangular part is fitted with clear glass. The clear glass transmits three times as much light per square meter as the coloured glass. What is the ratio for the sides of the rectangle so that the window transmits the maximum light?

a)

b)

c)

d)

IIT 1991
1325

Let be a line in the complex plane where  is the complex conjugate of b. If a point  is the deflection of a point  through the line, show that .

Let be a line in the complex plane where  is the complex conjugate of b. If a point  is the deflection of a point  through the line, show that .

IIT 1997

Play Selected  Login to save this search...