All BASICSTANDARDADVANCED

Question(s) from Search: IIT

Search Results Difficulty Solution
1101

If z = x + iy and ω =  then |ω| =1 implies that in the complex plane

a) z lies on the imaginary axis

b) z lies on the real axis

c) z lies on unit circle

d) none of these

If z = x + iy and ω =  then |ω| =1 implies that in the complex plane

a) z lies on the imaginary axis

b) z lies on the real axis

c) z lies on unit circle

d) none of these

IIT 1983
1102

For a positive integer n, define
 then

a) a(100) ≤ 100

b) a(100) > 100

c) a(200) ≤ 100

d) a(200) > 100

For a positive integer n, define
 then

a) a(100) ≤ 100

b) a(100) > 100

c) a(200) ≤ 100

d) a(200) > 100

IIT 1999
1103

Let f:[0, 1] → ℝ (the set all real numbers)be a function. Suppose the function is twice differentiable, f(0) = f(1) = 0 and satisfiesf′′(x) – 2f′(x) + f(x) ≥ ex, x ∈ [0, 1]If the function e−x f(x) assumes its minimum in the interval [0, 1] at x=14

then which of the following is true?

a) f(x)<f(x),14<x<34

b) f(x)>f(x),0<x<14

c) f(x)<f(x),0<x<14

d) f(x)<f(x),34<x<1

Let f:[0, 1] → ℝ (the set all real numbers)be a function. Suppose the function is twice differentiable, f(0) = f(1) = 0 and satisfiesf′′(x) – 2f′(x) + f(x) ≥ ex, x ∈ [0, 1]If the function e−x f(x) assumes its minimum in the interval [0, 1] at x=14

then which of the following is true?

a) f(x)<f(x),14<x<34

b) f(x)>f(x),0<x<14

c) f(x)<f(x),0<x<14

d) f(x)<f(x),34<x<1

IIT 2013
1104

There exists a function f(x) satisfying f (0) = 1,  and

f (x) > 0 for all x and

a)   for all x

b)  

c)   for all x

d)   for all x

There exists a function f(x) satisfying f (0) = 1,  and

f (x) > 0 for all x and

a)   for all x

b)  

c)   for all x

d)   for all x

IIT 1982
1105

Let k be an integer such that the triangle with vertices (k, −3k), (5, k) and (−k, 2) has area 28 square units. Then the orthocentre of the triangle is at the point

a) (2,12)

b) (1,34)

c) (1,34)

d) (2,12)

Let k be an integer such that the triangle with vertices (k, −3k), (5, k) and (−k, 2) has area 28 square units. Then the orthocentre of the triangle is at the point

a) (2,12)

b) (1,34)

c) (1,34)

d) (2,12)

IIT 2017
1106

If p is a natural number then prove that pn + 1 + (p + 1)2n – 1 is divisible by p2 + p + 1 for every positive integer n.

If p is a natural number then prove that pn + 1 + (p + 1)2n – 1 is divisible by p2 + p + 1 for every positive integer n.

IIT 1984
1107

A straight line L through the point (3, −2) is inclined at an angle of 60° to the line 3x+y=1

. If the line L also intersects the X- axis then the equation of L is

a) y+3x+233=0

b) y3x+2+33=0

c) 3yx+3+23=0

d) 3y+x3+23=0

A straight line L through the point (3, −2) is inclined at an angle of 60° to the line 3x+y=1

. If the line L also intersects the X- axis then the equation of L is

a) y+3x+233=0

b) y3x+2+33=0

c) 3yx+3+23=0

d) 3y+x3+23=0

IIT 2011
1108

The orthocenter of the triangle formed by the lines
  lies in the quadrant number . . . . .

The orthocenter of the triangle formed by the lines
  lies in the quadrant number . . . . .

IIT 1985
1109

Prove by mathematical induction that
 for every positive integer n.

Prove by mathematical induction that
 for every positive integer n.

IIT 1987
1110

The sides of a rhombus are along the lines x – y + 1 = 0 and 7x – y – 5 = 0. If its diagonals intersect at (−1, −2) then which one of the following is a vertex of the rhombus?

a) (3,9)

b) (3,8)

c) (13,83)

d) (103,73)

The sides of a rhombus are along the lines x – y + 1 = 0 and 7x – y – 5 = 0. If its diagonals intersect at (−1, −2) then which one of the following is a vertex of the rhombus?

a) (3,9)

b) (3,8)

c) (13,83)

d) (103,73)

IIT 2016
1111

One or more than one correct option

Circle(s) touching X – axis at a distance 3 from the origin and having an intercept of length 27

on Y – axis is/are

a) x2 + y2 – 6x + 8y + 9 = 0

b) x2 + y2 – 6x + 7y + 9 = 0

c) x2 + y2 – 6x − 8y + 9 = 0

d) x2 + y2 – 6x − 7y + 9 = 0

One or more than one correct option

Circle(s) touching X – axis at a distance 3 from the origin and having an intercept of length 27

on Y – axis is/are

a) x2 + y2 – 6x + 8y + 9 = 0

b) x2 + y2 – 6x + 7y + 9 = 0

c) x2 + y2 – 6x − 8y + 9 = 0

d) x2 + y2 – 6x − 7y + 9 = 0

IIT 2013
1112

Using induction or otherwise, prove that for any non-negative integers m, n, r and k
 

Using induction or otherwise, prove that for any non-negative integers m, n, r and k
 

IIT 1991
1113

Let V be the volume of the parallelepiped formed by the vectors  and . If ar, br, cr where r = 1, 2, 3 are non-negative real numbers and , show that V ≤ L3

Let V be the volume of the parallelepiped formed by the vectors  and . If ar, br, cr where r = 1, 2, 3 are non-negative real numbers and , show that V ≤ L3

IIT 2002
1114

One or more than one correct option

A circle S passes through the point (0, 1) and is orthogonal to the circles (x – 1)2 + y2 = 16 and x2 + y2 = 1, then

a) Radius of S is 8

b) Radius of S is 7

c) Centre of S is (−7, 1)

d) Centre of S is (−8, 1)

One or more than one correct option

A circle S passes through the point (0, 1) and is orthogonal to the circles (x – 1)2 + y2 = 16 and x2 + y2 = 1, then

a) Radius of S is 8

b) Radius of S is 7

c) Centre of S is (−7, 1)

d) Centre of S is (−8, 1)

IIT 2014
1115

The locus of the midpoint of a chord of the circle  which subtend a right angle at the origin is

a)

b)

c)

d)

The locus of the midpoint of a chord of the circle  which subtend a right angle at the origin is

a)

b)

c)

d)

IIT 1984
1116

If n is a positive integer and 0 ≤ v < π then show that

If n is a positive integer and 0 ≤ v < π then show that

IIT 1994
1117

A tangent PT is drawn to the circle x2 + y2 = 4 at the point P(3,1)

. A straight line L, perpendicular to PT is tangent to the circle (x – 3)2 + y2 = 1A possible equation of L is

a) x3y=1

b) x+3y=1

c) x3y=1

d) x+3y=5

A tangent PT is drawn to the circle x2 + y2 = 4 at the point P(3,1)

. A straight line L, perpendicular to PT is tangent to the circle (x – 3)2 + y2 = 1A possible equation of L is

a) x3y=1

b) x+3y=1

c) x3y=1

d) x+3y=5

IIT 2012
1118

Let 0 < Ai < π for i = 1, 2, .  .  . n. Use mathematical induction to prove that
 
where n ≥ 1 is a natural number.

Let 0 < Ai < π for i = 1, 2, .  .  . n. Use mathematical induction to prove that
 
where n ≥ 1 is a natural number.

IIT 1997
1119

The centre of those circles which touch the circle x2 + y2 – 8x – 8y = 0, externally and also touch the X- axis, lie on

a) A circle

b) An ellipse which is not a circle

c) A hyperbola

d) A parabola

The centre of those circles which touch the circle x2 + y2 – 8x – 8y = 0, externally and also touch the X- axis, lie on

a) A circle

b) An ellipse which is not a circle

c) A hyperbola

d) A parabola

IIT 2016
1120

Solve

Solve

IIT 1978
1121

 for every 0 < α, β < 2.

 for every 0 < α, β < 2.

IIT 2003
1122

Let (x, y) be any point on the parabola y2 = 4x. Let P be the point that divides the line segment from (0, 0) to (x, y) in the ratio of 1 : 3. Then the locus of P is

a) x2 = y

b) y2 = 2x

c) y2 = x

d) x2 = 2y

Let (x, y) be any point on the parabola y2 = 4x. Let P be the point that divides the line segment from (0, 0) to (x, y) in the ratio of 1 : 3. Then the locus of P is

a) x2 = y

b) y2 = 2x

c) y2 = x

d) x2 = 2y

IIT 2011
1123

The value of  where x > 0 is

a) 0

b) – 1

c) 1

d) 2

The value of  where x > 0 is

a) 0

b) – 1

c) 1

d) 2

IIT 2006
1124

The value of

a) 5050

b) 5051

c) 100

d) 101

The value of

a) 5050

b) 5051

c) 100

d) 101

IIT 2006
1125

Let the curve C be the mirror image of the parabola y2 = 4x with respect to the line x + y + 4 = 0. If A and B are points of intersection of C with the line y = −5 then the distance between A and B is . . .?

Let the curve C be the mirror image of the parabola y2 = 4x with respect to the line x + y + 4 = 0. If A and B are points of intersection of C with the line y = −5 then the distance between A and B is . . .?

IIT 2015

Play Selected  Login to save this search...