All BASICSTANDARDADVANCED

Question(s) from Search: IIT

Search Results Difficulty Solution
1101

If y = y(x) satisfies the differential equation 8x9+xdy=(4+9+x)1dx,x>0

and y(0)=7 Then y(256) =

a) 16

b) 3

c) 9

d) 80

If y = y(x) satisfies the differential equation 8x9+xdy=(4+9+x)1dx,x>0

and y(0)=7 Then y(256) =

a) 16

b) 3

c) 9

d) 80

IIT 2017
1102

A lot contains 20 articles. The probability that the lot contains exactly 2 defective articles is 0.4 and the probability that the lot contains exactly three defective articles is 0.6. Articles are drawn from the lot at random one by one without replacement and tested till defective articles are found. What is the probability that the testing will end at the 12th testing?

A lot contains 20 articles. The probability that the lot contains exactly 2 defective articles is 0.4 and the probability that the lot contains exactly three defective articles is 0.6. Articles are drawn from the lot at random one by one without replacement and tested till defective articles are found. What is the probability that the testing will end at the 12th testing?

IIT 1986
1103

If the curve y = f(x) passes through the point (1, −1) and satisfies the differential equation y(1 + xy) dx = xdy then f(12)

is equal to

a) 25

b) 45

c) 25

d) 45

If the curve y = f(x) passes through the point (1, −1) and satisfies the differential equation y(1 + xy) dx = xdy then f(12)

is equal to

a) 25

b) 45

c) 25

d) 45

IIT 2016
1104

If Cr stands for  then the sum of the series
 
where n is a positive integer, is equal to

a) 0

b) (−)n/2(n + 1)

c) (−)n/2 (n + 2)

d) None of these

If Cr stands for  then the sum of the series
 
where n is a positive integer, is equal to

a) 0

b) (−)n/2(n + 1)

c) (−)n/2 (n + 2)

d) None of these

IIT 1986
1105

Let T > 0 be a fixed real number. Suppose f is a continuous function such that for all x  ℝ, f(x + T) = f(x). If  then the value of  is

a)

b)

c) 3I

d) 6I

Let T > 0 be a fixed real number. Suppose f is a continuous function such that for all x  ℝ, f(x + T) = f(x). If  then the value of  is

a)

b)

c) 3I

d) 6I

IIT 2002
1106

One or more than one correct options

If y(x) satisfies the differential equation y′ − ytanx = 2xsecx and y(0) = 0, then

a) y(π4)=π282

b) y(π4)=π218

c) y(π3)=π29

d) y(π3)=4π3+2π233

One or more than one correct options

If y(x) satisfies the differential equation y′ − ytanx = 2xsecx and y(0) = 0, then

a) y(π4)=π282

b) y(π4)=π218

c) y(π3)=π29

d) y(π3)=4π3+2π233

IIT 2012
1107

The sum if p > q is maximum when m is

a) 5

b) 10

c) 15

d) 20

The sum if p > q is maximum when m is

a) 5

b) 10

c) 15

d) 20

IIT 2002
1108

At present a firm is manufacturing 2000 items. It is estimated that the rate of change of production P with respect to additional number of workers x is given by dPdx=10012x

. If the firm employs 25 more workers then the new level of production of items is

a) 2500

b) 3000

c) 3500

d) 4500

At present a firm is manufacturing 2000 items. It is estimated that the rate of change of production P with respect to additional number of workers x is given by dPdx=10012x

. If the firm employs 25 more workers then the new level of production of items is

a) 2500

b) 3000

c) 3500

d) 4500

IIT 2013
1109

If a, b, c; u, v, w are complex numbers representing the vertices of two triangles such that c = (1 − r)a + rb, w = (1 − r)u + rv where r is a complex number. The two triangles

a) have the same area

b) are similar

c) are congruent

d) none of these

If a, b, c; u, v, w are complex numbers representing the vertices of two triangles such that c = (1 − r)a + rb, w = (1 − r)u + rv where r is a complex number. The two triangles

a) have the same area

b) are similar

c) are congruent

d) none of these

IIT 1985
1110

Prove that

 

Prove that

 

IIT 1979
1111

The question contains Statement – 1(assertion) and Statement – 2 (reason). Let f (x) = 2 + cosx for all real x.

Statement 1: For each real t, there exists a point c in [t, t + π] such that  because

Statement 2: f (t) = f[t, t + 2π] for each real t

a) Statement 1 and 2 are true. Statement 2 is a correct explanation of Statement 1.

b) Statement 1 and 2 are true. Statement 2 is not a correct explanation of Statement 1.

c) Statement 1 is true and Statement 2 is false.

d) Statement 1 is false. Statement 2 is true.

The question contains Statement – 1(assertion) and Statement – 2 (reason). Let f (x) = 2 + cosx for all real x.

Statement 1: For each real t, there exists a point c in [t, t + π] such that  because

Statement 2: f (t) = f[t, t + 2π] for each real t

a) Statement 1 and 2 are true. Statement 2 is a correct explanation of Statement 1.

b) Statement 1 and 2 are true. Statement 2 is not a correct explanation of Statement 1.

c) Statement 1 is true and Statement 2 is false.

d) Statement 1 is false. Statement 2 is true.

IIT 2007
1112

Let f(x) = (1 – x)2 sin2x + x2 and g(x)=1x(2(t1)t+1lnt)f(t)dt

Which of the following is true?

a) g is increasing on (1, ∞)

b) g is decreasing on (1, ∞)

c) g is increasing on (1, 2) and decreasing on (2, ∞)

d) g is decreasing on (1, 2) and increasing on (2, ∞)

Let f(x) = (1 – x)2 sin2x + x2 and g(x)=1x(2(t1)t+1lnt)f(t)dt

Which of the following is true?

a) g is increasing on (1, ∞)

b) g is decreasing on (1, ∞)

c) g is increasing on (1, 2) and decreasing on (2, ∞)

d) g is decreasing on (1, 2) and increasing on (2, ∞)

IIT 2013
1113

Use mathematical induction to prove: If n is an odd positive integer
then  is divisible by 24.

Use mathematical induction to prove: If n is an odd positive integer
then  is divisible by 24.

IIT 1983
1114

Let PS is the median of the triangle with vertices P(2, 2), Q(6, −1) and R(7, 3), then the equation of the line passing through (1, −1) and parallel to PS is

a) 4x – 7y – 11 = 0

b) 2x + 9y + 7 = 0

c) 4x + 7y + 3 = 0

d) 2x – 9y – 11 = 0

Let PS is the median of the triangle with vertices P(2, 2), Q(6, −1) and R(7, 3), then the equation of the line passing through (1, −1) and parallel to PS is

a) 4x – 7y – 11 = 0

b) 2x + 9y + 7 = 0

c) 4x + 7y + 3 = 0

d) 2x – 9y – 11 = 0

IIT 2014
1115

One or more than one correct option

For a > b > c > 0, the distance between (1, 1) and the point of intersection of the lines ax + by + c = 0 and bx + ay + c = 0 is less than 22

, then

a) a + b – c > 0

b) a − b + c < 0

c) a − b + c > 0

d) a + b – c < 0

One or more than one correct option

For a > b > c > 0, the distance between (1, 1) and the point of intersection of the lines ax + by + c = 0 and bx + ay + c = 0 is less than 22

, then

a) a + b – c > 0

b) a − b + c < 0

c) a − b + c > 0

d) a + b – c < 0

IIT 2014
1116

Using mathematical induction, prove that
 
m, n, k are positive integers and  for p < q

Using mathematical induction, prove that
 
m, n, k are positive integers and  for p < q

IIT 1989
1117

If one of the diameters of the circle, given by the equation x2 + y2 – 4x + 6y – 12 = 0 is a chord of a circle S whose centre is at (−3, 2), then the radius of S is

a) 52

b) 53

c) 5

d) 10

If one of the diameters of the circle, given by the equation x2 + y2 – 4x + 6y – 12 = 0 is a chord of a circle S whose centre is at (−3, 2), then the radius of S is

a) 52

b) 53

c) 5

d) 10

IIT 2016
1118

If  for all k ≥ n then show that

If  for all k ≥ n then show that

IIT 1992
1119

The function  (where [y] is the greatest integer less than or equal to y) is discontinuous at

a) All integers

b) All integers except 0 and 1

c) All integers except 0

d) All integers except 1

The function  (where [y] is the greatest integer less than or equal to y) is discontinuous at

a) All integers

b) All integers except 0 and 1

c) All integers except 0

d) All integers except 1

IIT 1999
1120

If  are three non-coplanar unit vectors and α, β, γ are the angles between  , v and w, w and u respectively and x, y and z are unit vectors along the bisector of the angles α, β, γ respectively. Prove that
  

If  are three non-coplanar unit vectors and α, β, γ are the angles between  , v and w, w and u respectively and x, y and z are unit vectors along the bisector of the angles α, β, γ respectively. Prove that
  

IIT 2003
1121

For how many values of p, the circlex2 + y2 + 2x + 4y – p = 0 and the coordinate axis have exactly three common points

a) 0

b) 1

c) 2

d) 3

For how many values of p, the circlex2 + y2 + 2x + 4y – p = 0 and the coordinate axis have exactly three common points

a) 0

b) 1

c) 2

d) 3

IIT 2014
1122

A tangent PT is drawn to the circle x2 + y2 = 4 at the point P(3,1)

. A straight line L, perpendicular to PT is tangent to the circle (x – 3)2 + y2 = 1A common tangent to the circles is

a) x = 4

b) y = 2

c) x+3y=4

d) x+22y=6

A tangent PT is drawn to the circle x2 + y2 = 4 at the point P(3,1)

. A straight line L, perpendicular to PT is tangent to the circle (x – 3)2 + y2 = 1A common tangent to the circles is

a) x = 4

b) y = 2

c) x+3y=4

d) x+22y=6

IIT 2012
1123

The integer n, for which  is a finite

non–zero number is

a) 1

b) 2

c) 3

d) 4

The integer n, for which  is a finite

non–zero number is

a) 1

b) 2

c) 3

d) 4

IIT 2002
1124

The locus of the middle points of the chord of tangents drawn from points lying on the straight line 4x – 5y = 20 to the circle x2 + y2 = 9 is

a) 20(x2 + y2) – 36x + 45y = 0

b) 20(x2 + y2) + 36x − 45y = 0

c) 36(x2 + y2) – 20x + 45y = 0

d) 36(x2 + y2) + 20x − 45y = 0

The locus of the middle points of the chord of tangents drawn from points lying on the straight line 4x – 5y = 20 to the circle x2 + y2 = 9 is

a) 20(x2 + y2) – 36x + 45y = 0

b) 20(x2 + y2) + 36x − 45y = 0

c) 36(x2 + y2) – 20x + 45y = 0

d) 36(x2 + y2) + 20x − 45y = 0

IIT 2012
1125

Let  be a regular hexagon in a circle of unit radius. Then the product of the length of the segments  ,  and  is

a)

b)

c) 3

d)

Let  be a regular hexagon in a circle of unit radius. Then the product of the length of the segments  ,  and  is

a)

b)

c) 3

d)

IIT 1998

Play Selected  Login to save this search...