All BASICSTANDARDADVANCED

Question(s) from Search: IIT

Search Results Difficulty Solution
1101

Tangents are drawn from the point (17, 7) to the circle .
Statement 1 – The tangents are mutually perpendicular, because

Statement 2 – The locus of points from which mutually perpendicular tangents are drawn to the given circle is .

The question contains statement – 1 (assertion) and statement 2 (reason). Of these statements mark correct choice if

a) Statement 1 and 2 are true. Statement 2 is a correct explanation for statement 1.

b) Statement 1 and 2 are true. Statement 2 is not a correct explanation for statement 1.

c) Statement 1 is true. Statement 2 is false.

d) Statement 1 is false. Statement 2 is true

Tangents are drawn from the point (17, 7) to the circle .
Statement 1 – The tangents are mutually perpendicular, because

Statement 2 – The locus of points from which mutually perpendicular tangents are drawn to the given circle is .

The question contains statement – 1 (assertion) and statement 2 (reason). Of these statements mark correct choice if

a) Statement 1 and 2 are true. Statement 2 is a correct explanation for statement 1.

b) Statement 1 and 2 are true. Statement 2 is not a correct explanation for statement 1.

c) Statement 1 is true. Statement 2 is false.

d) Statement 1 is false. Statement 2 is true

IIT 2007
1102

Let  be the vertices of the triangle. A parallelogram AFDE is drawn with the vertices D, E and F on the line segments BC, CA and AB respectively. Using calculus find the area of the parallelogram.

a)  

b)  

c)  

d)  

Let  be the vertices of the triangle. A parallelogram AFDE is drawn with the vertices D, E and F on the line segments BC, CA and AB respectively. Using calculus find the area of the parallelogram.

a)  

b)  

c)  

d)  

IIT 1986
1103

Two rays in the first quadrant x + y = |a| and ax – y = 1 intersect each other in the interval a ε (a0, ∞). The value of a0 is

Two rays in the first quadrant x + y = |a| and ax – y = 1 intersect each other in the interval a ε (a0, ∞). The value of a0 is

IIT 2006
1104

Find the area of the region bounded by the curve C: y = tanx, tangent drawn to C at  and the X–axis.

a) ln2 – 1

b)

c)

d)

Find the area of the region bounded by the curve C: y = tanx, tangent drawn to C at  and the X–axis.

a) ln2 – 1

b)

c)

d)

IIT 1988
1105

then tan t =

then tan t =

IIT 2006
1106

Sketch the curves and identify the region bounded by
 

Sketch the curves and identify the region bounded by
 

IIT 1991
1107

Consider the following linear equations
ax + by + cz = 0
bx + cy + az = 0
cx + ay + bz = 0
Match the statements/expressions in column 1 with column 2

Column 1

Column2

i. a + b + c ≠ 0 and a2 + b2 + c2 = ab + bc + ca

A. Equations represent planes meeting at only one single point

ii. a + b + c = 0 and a2 + b2 + c2 ≠ ab + bc + ca

B. The equations represent the line x = y = z

iii. a + b + c ≠ 0 and a2 + b2 + c2 ≠ ab + bc + ca

C. The equations represent identical planes

iv. a + b + c = 0 and a2 + b2 + c2 = ab + bc + ca

D.The equations represent the whole of the three dimensional space

Consider the following linear equations
ax + by + cz = 0
bx + cy + az = 0
cx + ay + bz = 0
Match the statements/expressions in column 1 with column 2

Column 1

Column2

i. a + b + c ≠ 0 and a2 + b2 + c2 = ab + bc + ca

A. Equations represent planes meeting at only one single point

ii. a + b + c = 0 and a2 + b2 + c2 ≠ ab + bc + ca

B. The equations represent the line x = y = z

iii. a + b + c ≠ 0 and a2 + b2 + c2 ≠ ab + bc + ca

C. The equations represent identical planes

iv. a + b + c = 0 and a2 + b2 + c2 = ab + bc + ca

D.The equations represent the whole of the three dimensional space

IIT 2007
1108

The domain of the function y(x) given by the equation  is

a) 0 < x ≤ 1

b) 0 ≤ x ≤ 1

c)  < x ≤ 0

d)  < x < 1

The domain of the function y(x) given by the equation  is

a) 0 < x ≤ 1

b) 0 ≤ x ≤ 1

c)  < x ≤ 0

d)  < x < 1

IIT 2000
1109

If A = , 6A-1 = A2 + cA + dI

then (c, d ) is

a) (−11, 6)

b) (−6, 11)

c)  (6, 11 )

d)  (11, 6 )

If A = , 6A-1 = A2 + cA + dI

then (c, d ) is

a) (−11, 6)

b) (−6, 11)

c)  (6, 11 )

d)  (11, 6 )

IIT 2005
1110

Prove that

Prove that

IIT 1997
1111

Let be a line in the complex plane where  is the complex conjugate of b. If a point  is the deflection of a point  through the line, show that .

Let be a line in the complex plane where  is the complex conjugate of b. If a point  is the deflection of a point  through the line, show that .

IIT 1997
1112

Let

Find all possible values of b such that f(x) has the smallest value at x = 1.

a) (−2, ∞)

b) (−2, −1)

c) (1, ∞)

d) (−2, −1) ∪ (1, ∞)

Let

Find all possible values of b such that f(x) has the smallest value at x = 1.

a) (−2, ∞)

b) (−2, −1)

c) (1, ∞)

d) (−2, −1) ∪ (1, ∞)

IIT 1993
1113

Use mathematical induction for
 
to prove that
Im = mπ, m = 0, 1, 2 .  .  .  .

Use mathematical induction for
 
to prove that
Im = mπ, m = 0, 1, 2 .  .  .  .

IIT 1995
1114

Determine the points of maxima and minima of the function
  where b ≥ 0 is a constant.

a) Minima at x = x1, maxima at x = x2

b) Minima at x = x2, maxima at x = x1

c) Minima at x = x1, x2, no maxima

d) Maxima at x =x1, x2, no minima

where x1 =   and x2 =   

Determine the points of maxima and minima of the function
  where b ≥ 0 is a constant.

a) Minima at x = x1, maxima at x = x2

b) Minima at x = x2, maxima at x = x1

c) Minima at x = x1, x2, no maxima

d) Maxima at x =x1, x2, no minima

where x1 =   and x2 =   

IIT 1996
1115

Consider the circle x2 + y2 = 9 and the parabola y2 = 8x. They intersect P and Q in the first and fourth quadrants respectively. Tangents to the circle at P and Q intersect the X–axis at R and tangents to the parabola at P and Q intersect the X- axis at S. The radius of the circum circle of △PRS is

a) 5

b)

c) 3

d)

Consider the circle x2 + y2 = 9 and the parabola y2 = 8x. They intersect P and Q in the first and fourth quadrants respectively. Tangents to the circle at P and Q intersect the X–axis at R and tangents to the parabola at P and Q intersect the X- axis at S. The radius of the circum circle of △PRS is

a) 5

b)

c) 3

d)

IIT 2007
1116

Let  where 0 ≤ x ≤ 1. Determine the area bounded by y = f (x), X–axis, x = 0 and x = 1.

a)

b)

c)

d)

Let  where 0 ≤ x ≤ 1. Determine the area bounded by y = f (x), X–axis, x = 0 and x = 1.

a)

b)

c)

d)

IIT 1997
1117

Which of the following function is periodic?

a) f(x) = x – [x] where [x] denotes the greatest integer less than equal to the real number x

b)

c) f(x) = x cos(x)

d) None of these

Which of the following function is periodic?

a) f(x) = x – [x] where [x] denotes the greatest integer less than equal to the real number x

b)

c) f(x) = x cos(x)

d) None of these

IIT 1983
1118

A curve C has the property that the tangent drawn at any point P on C meets the co-ordinate axes at A and B, and P is the mid-point of AB. The curve passes through the point (1, 1). Determine the equation of the curve.

a) x2y = 1

b) x = y

c) xy = 1

d) x2 = y

A curve C has the property that the tangent drawn at any point P on C meets the co-ordinate axes at A and B, and P is the mid-point of AB. The curve passes through the point (1, 1). Determine the equation of the curve.

a) x2y = 1

b) x = y

c) xy = 1

d) x2 = y

IIT 1998
1119

Let –1 ≤ p ≤ 1. Show that the equation 4x3 – 3x – p = 0 has a unique root in the interval  and identify it.

a) p

b) p/3

c)

d)

Let –1 ≤ p ≤ 1. Show that the equation 4x3 – 3x – p = 0 has a unique root in the interval  and identify it.

a) p

b) p/3

c)

d)

IIT 2001
1120

Find the coordinates of all points P on the ellipse , for which the area of △PON is maximum where O denotes the origin and N the feet of perpendicular from O to the tangent at P.

Find the coordinates of all points P on the ellipse , for which the area of △PON is maximum where O denotes the origin and N the feet of perpendicular from O to the tangent at P.

IIT 1999
1121

Determine the equation of the curve passing through origin in the form  which satisfies the differential equation

Determine the equation of the curve passing through origin in the form  which satisfies the differential equation

IIT 1996
1122

If α, β are roots of  and γ, δ are roots of  then evaluate  in terms of p, q, r, s.

If α, β are roots of  and γ, δ are roots of  then evaluate  in terms of p, q, r, s.

IIT 1979
1123

If p(x) = 51x101 – 2323x100 – 45x + 1035, using Rolle’s theorem prove that at least one root lies between .

If p(x) = 51x101 – 2323x100 – 45x + 1035, using Rolle’s theorem prove that at least one root lies between .

IIT 2004
1124

For what values of m does the system of equations 3x + my = m, 2x – 5y = 20 have solutions satisfying x > 0, y > 0?

a) m ε (

b) m ε (

c) m ε ( ∪ (

d) m ε (

For what values of m does the system of equations 3x + my = m, 2x – 5y = 20 have solutions satisfying x > 0, y > 0?

a) m ε (

b) m ε (

c) m ε ( ∪ (

d) m ε (

IIT 1980
1125

Given

 
and f(x) is a quadratic polynomial. V is a point of maximum of f(x) and ‘A’ is the point where f(x) cuts the X–axis. ‘B’ is a point such that AB subtends a right angle at V. Find the area between chord AB and f(x).

a) 125

b) 125/2

c) 125/3

d) 125/6

Given

 
and f(x) is a quadratic polynomial. V is a point of maximum of f(x) and ‘A’ is the point where f(x) cuts the X–axis. ‘B’ is a point such that AB subtends a right angle at V. Find the area between chord AB and f(x).

a) 125

b) 125/2

c) 125/3

d) 125/6

IIT 2005

Play Selected  Login to save this search...