All BASICSTANDARDADVANCED

Question(s) from Search: IIT

Search Results Difficulty Solution
1076

A straight line L through the point (3, −2) is inclined at an angle of 60° to the line 3x+y=1

. If the line L also intersects the X- axis then the equation of L is

a) y+3x+233=0

b) y3x+2+33=0

c) 3yx+3+23=0

d) 3y+x3+23=0

A straight line L through the point (3, −2) is inclined at an angle of 60° to the line 3x+y=1

. If the line L also intersects the X- axis then the equation of L is

a) y+3x+233=0

b) y3x+2+33=0

c) 3yx+3+23=0

d) 3y+x3+23=0

IIT 2011
1077

The sides of a rhombus are along the lines x – y + 1 = 0 and 7x – y – 5 = 0. If its diagonals intersect at (−1, −2) then which one of the following is a vertex of the rhombus?

a) (3,9)

b) (3,8)

c) (13,83)

d) (103,73)

The sides of a rhombus are along the lines x – y + 1 = 0 and 7x – y – 5 = 0. If its diagonals intersect at (−1, −2) then which one of the following is a vertex of the rhombus?

a) (3,9)

b) (3,8)

c) (13,83)

d) (103,73)

IIT 2016
1078

The C be a circle with the centre at (1, 1) and radius 1. If T is the circle centred at (0, k) passing through origin and touches the circle C externally, then the radius of T is equal to

a) 32

b) 32

c) 12

d) 14

The C be a circle with the centre at (1, 1) and radius 1. If T is the circle centred at (0, k) passing through origin and touches the circle C externally, then the radius of T is equal to

a) 32

b) 32

c) 12

d) 14

IIT 2014
1079

If n is a positive integer and 0 ≤ v < π then show that

If n is a positive integer and 0 ≤ v < π then show that

IIT 1994
1080

One or more than one correct option

The circle C1 : x2 + y2 = 3 with centre at O intersect the parabola x2 = 2y at the point P in the first quadrant. Let the tangent to the circle C1 at P touches other two circles C2 and C3 at R2 and R3 respectively. Suppose C2 and C3 have equal radii 23

and centres Q2 and Q3 respectively. If Q2 and Q3 lie on the Y- axis, then

a) Q2Q3=12

b) R2R3=46

c) areaof2R3isR2

d) areaofPQ2Q3is42

One or more than one correct option

The circle C1 : x2 + y2 = 3 with centre at O intersect the parabola x2 = 2y at the point P in the first quadrant. Let the tangent to the circle C1 at P touches other two circles C2 and C3 at R2 and R3 respectively. Suppose C2 and C3 have equal radii 23

and centres Q2 and Q3 respectively. If Q2 and Q3 lie on the Y- axis, then

a) Q2Q3=12

b) R2R3=46

c) areaof2R3isR2

d) areaofPQ2Q3is42

IIT 2016
1081

The circle passing through the point (−1, 0) and touching the Y – axis at (0, 2) also passes through the point

a) (32,0)

b) (52,0)

c) (32,52)

d) (4,0)

The circle passing through the point (−1, 0) and touching the Y – axis at (0, 2) also passes through the point

a) (32,0)

b) (52,0)

c) (32,52)

d) (4,0)

IIT 2011
1082

 for every 0 < α, β < 2.

 for every 0 < α, β < 2.

IIT 2003
1083

Let O be the vertex and Q be any point on the parabola x2 = 8y. If the point P divides the line segment OQ^

internally in the ratio 1 : 3 then the locus of P is

a) x2 = y

b) y2 = x

c) y2 = 2x

d) x2 = 2y

Let O be the vertex and Q be any point on the parabola x2 = 8y. If the point P divides the line segment OQ^

internally in the ratio 1 : 3 then the locus of P is

a) x2 = y

b) y2 = x

c) y2 = 2x

d) x2 = 2y

IIT 2015
1084

The value of  where x > 0 is

a) 0

b) – 1

c) 1

d) 2

The value of  where x > 0 is

a) 0

b) – 1

c) 1

d) 2

IIT 2006
1085

The value of

a) 5050

b) 5051

c) 100

d) 101

The value of

a) 5050

b) 5051

c) 100

d) 101

IIT 2006
1086

Let S be the focus of the parabola y2 = 8x and PQ be the common chord of the circle x2 + y2 – 2x – 4y = 0 and the given parabola. The area of △QPS is

a) 2 sq. units

b) 4 sq. units

c) 6 sq. units

d) 8 sq. units

Let S be the focus of the parabola y2 = 8x and PQ be the common chord of the circle x2 + y2 – 2x – 4y = 0 and the given parabola. The area of △QPS is

a) 2 sq. units

b) 4 sq. units

c) 6 sq. units

d) 8 sq. units

IIT 2012
1087

Let a, r, s, t be non-zero real numbers. Let P(at2, 2at), Q, R(ar2, 2ar and S(as2, 2as) be distinct points on the parabola y2 = 4ax. Suppose PQ is the focal chord and QR and PK are parallel, where K is point (2a, 0)If st = 1 then the tangent at P and normal at S to the parabola meet at a point whose ordinate is

a) (t2+1)22t3

b) a(t2+1)22t3

c) a(t2+1)2r3

d) a(t2+2)2r3

Let a, r, s, t be non-zero real numbers. Let P(at2, 2at), Q, R(ar2, 2ar and S(as2, 2as) be distinct points on the parabola y2 = 4ax. Suppose PQ is the focal chord and QR and PK are parallel, where K is point (2a, 0)If st = 1 then the tangent at P and normal at S to the parabola meet at a point whose ordinate is

a) (t2+1)22t3

b) a(t2+1)22t3

c) a(t2+1)2r3

d) a(t2+2)2r3

IIT 2014
1088

Multiple choices

Let g (x) = x f (x), where   at x = 0

a) g is  but  is not continuous

b) g is  while f is not

c) f and g are both differentiable

d) g is  and  is continuous

Multiple choices

Let g (x) = x f (x), where   at x = 0

a) g is  but  is not continuous

b) g is  while f is not

c) f and g are both differentiable

d) g is  and  is continuous

IIT 1994
1089

The tangent PT and the normal PN of the parabola y2 = 4ax at the point P on it meet its axis at the points T and N respectively. The locus of the centroid of the triangle PTM is a parabola whose

a) Vertex is (2a3,0)

b) Directrix is x = 0

c) Latus rectum is 2a3

d) Focus is (a, 0)

The tangent PT and the normal PN of the parabola y2 = 4ax at the point P on it meet its axis at the points T and N respectively. The locus of the centroid of the triangle PTM is a parabola whose

a) Vertex is (2a3,0)

b) Directrix is x = 0

c) Latus rectum is 2a3

d) Focus is (a, 0)

IIT 2009
1090

A five digit number divisible by 3 is formed using the numerals 0, 1, 2, 3, 4, and 5 without repetition. Total number of ways this can be done is

a) At least 30

b) At most 20

c) Exactly 25

d) None of these

A five digit number divisible by 3 is formed using the numerals 0, 1, 2, 3, 4, and 5 without repetition. Total number of ways this can be done is

a) At least 30

b) At most 20

c) Exactly 25

d) None of these

IIT 1989
1091

A rectangle with sides (2m – 1) and (2n – 1) is divided into squares of unit length by drawing parallel lines. Then the number of rectangles possible with odd side lengths is

a) mn (m + 1)(n + 1)

b)

c)

d)

A rectangle with sides (2m – 1) and (2n – 1) is divided into squares of unit length by drawing parallel lines. Then the number of rectangles possible with odd side lengths is

a) mn (m + 1)(n + 1)

b)

c)

d)

IIT 2005
1092

Find the values of a and b, so that the functions

 

Is continuous for 0 ≤ x ≤ π

a)

b)

c)

d)

Find the values of a and b, so that the functions

 

Is continuous for 0 ≤ x ≤ π

a)

b)

c)

d)

IIT 1989
1093

Let α ε ℝ, then a function f : ℝ → ℝ is differentiable at α if and only if there is a function g : ℝ → ℝ which is continuous at α and satisfies f(x) – f(α) = g(x) (x – α) for all x ε ℝ.

a) True

b) False

Let α ε ℝ, then a function f : ℝ → ℝ is differentiable at α if and only if there is a function g : ℝ → ℝ which is continuous at α and satisfies f(x) – f(α) = g(x) (x – α) for all x ε ℝ.

a) True

b) False

IIT 2001
1094

If two functions f and g satisfy the given conditions  x, y ε ℝ, f(x – y) = f(x)g(y) – f(y)g(x) and g(x – y) = g(x) . g(y) + f(x) . f(y).

If the RHD at x = 0 exists for f(x) then find the derivative of g(x) at x = 0.

If two functions f and g satisfy the given conditions  x, y ε ℝ, f(x – y) = f(x)g(y) – f(y)g(x) and g(x – y) = g(x) . g(y) + f(x) . f(y).

If the RHD at x = 0 exists for f(x) then find the derivative of g(x) at x = 0.

IIT 2005
1095

Let

be a real valued function. The set of points where f(x) is not differentiable are

a) {0}

b) {1}

c) {0, 1}

d) {∅}

Let

be a real valued function. The set of points where f(x) is not differentiable are

a) {0}

b) {1}

c) {0, 1}

d) {∅}

IIT 1981
1096

Let f(x) = [x] where [.] denotes the greatest integer function. Then the domain of f is .  .  .  ., points of discontinuity of f are .  .  .  .

a) ∀ x ε I

b) ∀ x ε I − {0}

c) ∀ x ε I – {0, 1}

d) ∀ x ε I – {0, 1, 2}

Let f(x) = [x] where [.] denotes the greatest integer function. Then the domain of f is .  .  .  ., points of discontinuity of f are .  .  .  .

a) ∀ x ε I

b) ∀ x ε I − {0}

c) ∀ x ε I – {0, 1}

d) ∀ x ε I – {0, 1, 2}

IIT 1996
1097

PQ and PR are two infinite rays, QAR is an arc.

U


Points lying in the shaded region excluding the boundary satisfies

a)   |z + 1| > 2; |arg(z + 1)| <

b)   |z + 1| < 2; |arg(z + 1)| <

c)  

d)  

PQ and PR are two infinite rays, QAR is an arc.

U


Points lying in the shaded region excluding the boundary satisfies

a)   |z + 1| > 2; |arg(z + 1)| <

b)   |z + 1| < 2; |arg(z + 1)| <

c)  

d)  

IIT 2005
1098

If a continuous function f defined on the real line ℝ, assumes positive and negative values in ℝ then the equation f(x) = 0 has a root in ℝ. For example, it is known that if a continuous function f on ℝ is positive at some points and its minimum value is negative then the equation f(x) = 0 has a root in ℝ. Consider the function f(x) =  for all real x where k is a real constant.

The positive value of k for which  has only one root is

a)

b) 1

c) e

d) ln2

If a continuous function f defined on the real line ℝ, assumes positive and negative values in ℝ then the equation f(x) = 0 has a root in ℝ. For example, it is known that if a continuous function f on ℝ is positive at some points and its minimum value is negative then the equation f(x) = 0 has a root in ℝ. Consider the function f(x) =  for all real x where k is a real constant.

The positive value of k for which  has only one root is

a)

b) 1

c) e

d) ln2

IIT 2007
1099

Let the complex numbers  are vertices of an equilateral triangle. If  be the circumcentre of the triangle, then prove that

Let the complex numbers  are vertices of an equilateral triangle. If  be the circumcentre of the triangle, then prove that

IIT 1981
1100

Consider the following linear equations
ax + by + cz = 0
bx + cy + az = 0
cx + ay + bz = 0
Match the statements/expressions in column 1 with column 2

Column 1

Column2

i. a + b + c ≠ 0 and a2 + b2 + c2 = ab + bc + ca

A. Equations represent planes meeting at only one single point

ii. a + b + c = 0 and a2 + b2 + c2 ≠ ab + bc + ca

B. The equations represent the line x = y = z

iii. a + b + c ≠ 0 and a2 + b2 + c2 ≠ ab + bc + ca

C. The equations represent identical planes

iv. a + b + c = 0 and a2 + b2 + c2 = ab + bc + ca

D.The equations represent the whole of the three dimensional space

Consider the following linear equations
ax + by + cz = 0
bx + cy + az = 0
cx + ay + bz = 0
Match the statements/expressions in column 1 with column 2

Column 1

Column2

i. a + b + c ≠ 0 and a2 + b2 + c2 = ab + bc + ca

A. Equations represent planes meeting at only one single point

ii. a + b + c = 0 and a2 + b2 + c2 ≠ ab + bc + ca

B. The equations represent the line x = y = z

iii. a + b + c ≠ 0 and a2 + b2 + c2 ≠ ab + bc + ca

C. The equations represent identical planes

iv. a + b + c = 0 and a2 + b2 + c2 = ab + bc + ca

D.The equations represent the whole of the three dimensional space

IIT 2007

Play Selected  Login to save this search...