All BASICSTANDARDADVANCED

Question(s) from Search: IIT

Search Results Difficulty Solution
1076

Let S be a square of unit area. Consider any quadrilateral which has one vertex on each side of S. If a, b, c and d denote the lengths of the sides of the quadrilateral; prove that
2 ≤ a2 + b2 + c2 + d2 ≤ 4

Let S be a square of unit area. Consider any quadrilateral which has one vertex on each side of S. If a, b, c and d denote the lengths of the sides of the quadrilateral; prove that
2 ≤ a2 + b2 + c2 + d2 ≤ 4

IIT 1997
1077

The number of ordered pairs satisfying the equations
 is

a) 4

b) 2

c) 0

d) 1

The number of ordered pairs satisfying the equations
 is

a) 4

b) 2

c) 0

d) 1

IIT 2005
1078

Let O (0, 0), A(2, 0) and  be the vertices of a triangle. Let R be the region consisting of all those points P inside ΔOAB which satisfies d(P, OA) ≤ d(P, OB) . d(P, AB), where d denotes the distance from the point to the corresponding line. Sketch the region R and find its area.

a)

b)

c)

d)

Let O (0, 0), A(2, 0) and  be the vertices of a triangle. Let R be the region consisting of all those points P inside ΔOAB which satisfies d(P, OA) ≤ d(P, OB) . d(P, AB), where d denotes the distance from the point to the corresponding line. Sketch the region R and find its area.

a)

b)

c)

d)

IIT 1997
1079

Let f(x) be a continuous function given by
 

Find the area of the region in the third quadrant bounded by the curve x = − 2y2 and y = f(x) lying on the left of the line 8x + 1 = 0.

a) 192

b) 320

c) 761/192

d) 320/761

Let f(x) be a continuous function given by
 

Find the area of the region in the third quadrant bounded by the curve x = − 2y2 and y = f(x) lying on the left of the line 8x + 1 = 0.

a) 192

b) 320

c) 761/192

d) 320/761

IIT 1999
1080

Let d be the perpendicular distance from the centre of the ellipse  to the tangent at a point P on the ellipse. Let F1 and F2 be the two focii of the ellipse, then show that

Let d be the perpendicular distance from the centre of the ellipse  to the tangent at a point P on the ellipse. Let F1 and F2 be the two focii of the ellipse, then show that

IIT 1995
1081

Find the area of the region bounded by the curves y = x2, y = |2 – x2| and y = 2 which lies to the right of the line x = 1.

a)

b)

c)

d)

Find the area of the region bounded by the curves y = x2, y = |2 – x2| and y = 2 which lies to the right of the line x = 1.

a)

b)

c)

d)

IIT 2002
1082

Prove that in an ellipse the perpendicular from a focus upon a tangent and the line joining the centre of the ellipse to the point of contact meet on the corresponding directrix.

Prove that in an ellipse the perpendicular from a focus upon a tangent and the line joining the centre of the ellipse to the point of contact meet on the corresponding directrix.

IIT 2002
1083

A curve passing through the point  has the property that the perpendicular distance of the origin from the normal at any point P of the curve is equal to the distance of P from the X-axis. Determine the equation of the curve.

A curve passing through the point  has the property that the perpendicular distance of the origin from the normal at any point P of the curve is equal to the distance of P from the X-axis. Determine the equation of the curve.

IIT 1999
1084

Let f : ℝ → ℝ be any function. Define g : ℝ → ℝ by g(x) = |f(x)| for all x. Then g is

a) Onto if f is onto

b) One–one if f is one–one

c) Continuous if f is continuous

d) Differentiable if f is differentiable

Let f : ℝ → ℝ be any function. Define g : ℝ → ℝ by g(x) = |f(x)| for all x. Then g is

a) Onto if f is onto

b) One–one if f is one–one

c) Continuous if f is continuous

d) Differentiable if f is differentiable

IIT 2000
1085

f(x) is a differentiable function and g(x) is a double differentiable function such that  
If  prove that there exists some c ε (−3, 3) such that .

f(x) is a differentiable function and g(x) is a double differentiable function such that  
If  prove that there exists some c ε (−3, 3) such that .

IIT 2005
1086

If (x – r) is a factor of the polynomial f(x) = anxn + .  .  . + a0, repeated m times (1 < m ≤ n) then r is a root of  repeated m times.

a) True

b) False

If (x – r) is a factor of the polynomial f(x) = anxn + .  .  . + a0, repeated m times (1 < m ≤ n) then r is a root of  repeated m times.

a) True

b) False

IIT 1983
1087

Let a solution y = y (x) of the differential equation  satisfies

Statement 1 :

Statement 2 :

a) Statement 1 is true. Statement 2 is true. Statement 2 is a correct explanation of statement 1.

b) Statement 1 is true. Statement 2 is true. Statement 2 is not a correct explanation of statement 1

c) Statement 1 is true. Statement 2 is false.

d) Statement 1 is false. Statement 2 is true.

Let a solution y = y (x) of the differential equation  satisfies

Statement 1 :

Statement 2 :

a) Statement 1 is true. Statement 2 is true. Statement 2 is a correct explanation of statement 1.

b) Statement 1 is true. Statement 2 is true. Statement 2 is not a correct explanation of statement 1

c) Statement 1 is true. Statement 2 is false.

d) Statement 1 is false. Statement 2 is true.

IIT 2008
1088

A hyperbola having the transverse axis of length 2sinθ is confocal with the ellipse . Then its equation is

a)

b)

c)

d)

A hyperbola having the transverse axis of length 2sinθ is confocal with the ellipse . Then its equation is

a)

b)

c)

d)

IIT 2007
1089

The angle between the pair of tangents from a point P to the parabola y2 = 4ax is 45°. Show that the locus of the point P is a hyperbola.

The angle between the pair of tangents from a point P to the parabola y2 = 4ax is 45°. Show that the locus of the point P is a hyperbola.

IIT 1998
1090

The integral 0π1+4sin2x24sinx2dx

is equal to

a) π4

b) 2π3443

c) 434

d) 434π3

The integral 0π1+4sin2x24sinx2dx

is equal to

a) π4

b) 2π3443

c) 434

d) 434π3

IIT 2014
1091

A box contains 24 identical balls of which 12 are white and 12 are black. The balls are drawn at random from the box one at a time with replacement. The probability that a white ball is drawn for the fourth time on the seventh draw is

a)

b)

c)

d)

A box contains 24 identical balls of which 12 are white and 12 are black. The balls are drawn at random from the box one at a time with replacement. The probability that a white ball is drawn for the fourth time on the seventh draw is

a)

b)

c)

d)

IIT 1984
1092

Let F : ℝ → ℝ be a thrice differentiable function. Suppose that F(1) = 0, F(3) = −4 and F′(x) < 0 for all x ε (1, 3). Let f(x) = x F(x) for all x ε ℝ.The correct statement(s) is/are

a) f′(1) < 0

b) f(2) < 0

c) f′(x) ≠ 0 for every x ε (1, 3)

d) f′(x) = 0 for some x ε (1, 3)

Let F : ℝ → ℝ be a thrice differentiable function. Suppose that F(1) = 0, F(3) = −4 and F′(x) < 0 for all x ε (1, 3). Let f(x) = x F(x) for all x ε ℝ.The correct statement(s) is/are

a) f′(1) < 0

b) f(2) < 0

c) f′(x) ≠ 0 for every x ε (1, 3)

d) f′(x) = 0 for some x ε (1, 3)

IIT 2015
1093

Let A, B , C be three mutually independent events. Consider the two statements S1 and S2

S1 : A and B ∪ Care independent

S2  : A and B ∩ C are independent. Then

a) Both S1 and S2 are true

b) Only S1 is true

c) Only S2 is true

d) Neither S1 nor S2 is true

Let A, B , C be three mutually independent events. Consider the two statements S1 and S2

S1 : A and B ∪ Care independent

S2  : A and B ∩ C are independent. Then

a) Both S1 and S2 are true

b) Only S1 is true

c) Only S2 is true

d) Neither S1 nor S2 is true

IIT 1994
1094

A circle C of radius 1 is inscribed in an equilateral triangle PQR. The point of contacts of C with its sides PQ, QR and RP are D, E, F respectively. The line PQ is given by  and the point D is . Further, it is given that the origin and the centre of C are on the same side of the line PQ. Equations of lines QR and RP are

a)

b)

c)

d)

A circle C of radius 1 is inscribed in an equilateral triangle PQR. The point of contacts of C with its sides PQ, QR and RP are D, E, F respectively. The line PQ is given by  and the point D is . Further, it is given that the origin and the centre of C are on the same side of the line PQ. Equations of lines QR and RP are

a)

b)

c)

d)

IIT 2008
1095

Let f(x) = 7tan8x + 7tan6x – 3tan4x – 3tan2x for all x(π2,π2)

Then the correct expression(s) is (are)

a) 0π4xf(x)dx=112

b) 0π4f(x)dx=0

c) 0π4xf(x)dx=18

d) 0π4f(x)dx=1

Let f(x) = 7tan8x + 7tan6x – 3tan4x – 3tan2x for all x(π2,π2)

Then the correct expression(s) is (are)

a) 0π4xf(x)dx=112

b) 0π4f(x)dx=0

c) 0π4xf(x)dx=18

d) 0π4f(x)dx=1

IIT 2015
1096

Consider the lines
L1: x + 3y – 5 = 0, L2: 3x – ky – 1 = 0, L3: 5x + 2y – 12 = 0.
Match the statement/expressions in column 1 with the statement/expression in column 2.

Column 1

Column 2

A) L1, L2, L3 are concurrent if

p) k = − 9

B) One of L1, L2, L3 is parallel to at least one of the other two

q)

C) L1, L2, L3 form a triangle if

r)

D) L1, L2, L3 do not form a triangle if

s) k = 5

Consider the lines
L1: x + 3y – 5 = 0, L2: 3x – ky – 1 = 0, L3: 5x + 2y – 12 = 0.
Match the statement/expressions in column 1 with the statement/expression in column 2.

Column 1

Column 2

A) L1, L2, L3 are concurrent if

p) k = − 9

B) One of L1, L2, L3 is parallel to at least one of the other two

q)

C) L1, L2, L3 form a triangle if

r)

D) L1, L2, L3 do not form a triangle if

s) k = 5

IIT 2008
1097

The number of quadratic polynomials f(x) with non-negative integer coefficients ≤ 3 satisfying f(0) = 0 and 01f(x)dx=1

is

a) 8

b) 2

c) 4

d) 0

The number of quadratic polynomials f(x) with non-negative integer coefficients ≤ 3 satisfying f(0) = 0 and 01f(x)dx=1

is

a) 8

b) 2

c) 4

d) 0

IIT 2014
1098

A function f : ℝ → ℝ, where ℝ is the set of real numbers, is defined by . Find the interval of values of α for which f is onto. Is the function one to one for α= 3? Justify your answer.

A function f : ℝ → ℝ, where ℝ is the set of real numbers, is defined by . Find the interval of values of α for which f is onto. Is the function one to one for α= 3? Justify your answer.

IIT 1996
1099

Let f : ℝ → ℝ be a function defined by f(x)={[x]x20x>2

where [x] denotes the greatest integer less than or equal to x. If I=12xf(x2)2+f(x+1)dx then the value of (4I – 1) is

a) 1

b) 3

c) 2

d) 0

Let f : ℝ → ℝ be a function defined by f(x)={[x]x20x>2

where [x] denotes the greatest integer less than or equal to x. If I=12xf(x2)2+f(x+1)dx then the value of (4I – 1) is

a) 1

b) 3

c) 2

d) 0

IIT 2015
1100

Let f: [0, 2] → ℝ be a function which is continuous on [0, 2] and differentiable on (0, 2) with f(0) = 1. Let F(x)=0x2f(t)dtforx[0,2]

. If F′(x) = f′(x) Ɐ x ∈ [0, 2] then F(2) equals

a) e2 – 1

b) e4 – 1

c) e – 1

d) e2

Let f: [0, 2] → ℝ be a function which is continuous on [0, 2] and differentiable on (0, 2) with f(0) = 1. Let F(x)=0x2f(t)dtforx[0,2]

. If F′(x) = f′(x) Ɐ x ∈ [0, 2] then F(2) equals

a) e2 – 1

b) e4 – 1

c) e – 1

d) e2

IIT 2014

Play Selected  Login to save this search...