All BASICSTANDARDADVANCED

Question(s) from Search: IIT

Search Results Difficulty Solution
1026

Given
 
 
Prove that
 

Given
 
 
Prove that
 

IIT 1984
1027

The coordinates of the in centre of the triangle that has the co ordinates of the mid points of its sides as (0, 1), (1, 1) and (1, 0) is

a) 2+2

b) 22

c) 1+2

d) 12

The coordinates of the in centre of the triangle that has the co ordinates of the mid points of its sides as (0, 1), (1, 1) and (1, 0) is

a) 2+2

b) 22

c) 1+2

d) 12

IIT 2013
1028

Using mathematical induction, prove that

 for n > 1

Using mathematical induction, prove that

 for n > 1

IIT 1986
1029

If f(x) =  then on the interval [0, π]

a) tan  and  are both continuous

b) tan  and  are both discontinuous

c) tan  and  are both continuous

d) tan  is continuous but  is not

If f(x) =  then on the interval [0, π]

a) tan  and  are both continuous

b) tan  and  are both discontinuous

c) tan  and  are both continuous

d) tan  is continuous but  is not

IIT 1989
1030

One or more than one correct option

A ray of light along x+3y=3

gets reflected upon reaching X- axis, the equation of the reflected ray is

a) y=x+3

b) 3y=x3

c) y=3x3

d) 3y=x1

One or more than one correct option

A ray of light along x+3y=3

gets reflected upon reaching X- axis, the equation of the reflected ray is

a) y=x+3

b) 3y=x3

c) y=3x3

d) 3y=x1

IIT 2013
1031

If  and  where 0 < x ≤1, then in this interval

a) Both f (x) and g (x) are increasing functions

b) Both f (x) and g (x) are decreasing functions

c) f (x) is an increasing function

d) g (x) is an increasing function

If  and  where 0 < x ≤1, then in this interval

a) Both f (x) and g (x) are increasing functions

b) Both f (x) and g (x) are decreasing functions

c) f (x) is an increasing function

d) g (x) is an increasing function

IIT 1997
1032

The number of common tangents to the circles x2 + y2 – 4x − 6y – 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0 is

a) 1

b) 2

c) 3

d) 4

The number of common tangents to the circles x2 + y2 – 4x − 6y – 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0 is

a) 1

b) 2

c) 3

d) 4

IIT 2015
1033

Let p ≥ 3 be an integer and α, β be the roots of x2 – (p + 1) x + 1 = 0. Using mathematical induction show that αn + βn
i) is an integer
ii) and is not divisible by p.

Let p ≥ 3 be an integer and α, β be the roots of x2 – (p + 1) x + 1 = 0. Using mathematical induction show that αn + βn
i) is an integer
ii) and is not divisible by p.

IIT 1992
1034

The function  is not differentiable at

a) – 1

b) 0

c) 1

d) 2

The function  is not differentiable at

a) – 1

b) 0

c) 1

d) 2

IIT 1999
1035

One or more than one correct option

Let RS be a diameter of the circle x2 + y2 = 1 where S is the point (1, 0). Let P be a variable point (other than R and S) on the circle and the tangents to the circle at S and P meet at the point Q. The normal to the circle at P intersect a line drawn through Q parallel to RS at a point E. Then the locus of E passes through the point(s)

a) (13,13)

b) (14,12)

c) (13,13)

d) (14,12)

One or more than one correct option

Let RS be a diameter of the circle x2 + y2 = 1 where S is the point (1, 0). Let P be a variable point (other than R and S) on the circle and the tangents to the circle at S and P meet at the point Q. The normal to the circle at P intersect a line drawn through Q parallel to RS at a point E. Then the locus of E passes through the point(s)

a) (13,13)

b) (14,12)

c) (13,13)

d) (14,12)

IIT 2016
1036

If x is not an integral multiple of 2π use mathematical induction to prove that
 

If x is not an integral multiple of 2π use mathematical induction to prove that
 

IIT 1994
1037

A circle passing through (1, −2) and touching the axis of X at (3, 0) also passes through the point

a) (−5, 2)

b) (2, −5)

c) (5, −2)

d) (−2, 5)

A circle passing through (1, −2) and touching the axis of X at (3, 0) also passes through the point

a) (−5, 2)

b) (2, −5)

c) (5, −2)

d) (−2, 5)

IIT 2013
1038

The circles  and  intersect each other in distinct points if

a) r < 2

b) r > 8

c) 2 < r < 8

d) 2 ≤ r ≤ 8

The circles  and  intersect each other in distinct points if

a) r < 2

b) r > 8

c) 2 < r < 8

d) 2 ≤ r ≤ 8

IIT 1994
1039

Prove by induction that
Pn = Aαn + Bβn for all n ≥ 1
Where α and β are roots of the quadratic equation
x2 – (1 – P) x – P (1 – P) = 0,
P1 = 1, P2 = 1 – P2, .  .  .,
Pn = (1 – P) Pn – 1 + P (1 – P) Pn – 2  n ≥ 3,
and ,

Prove by induction that
Pn = Aαn + Bβn for all n ≥ 1
Where α and β are roots of the quadratic equation
x2 – (1 – P) x – P (1 – P) = 0,
P1 = 1, P2 = 1 – P2, .  .  .,
Pn = (1 – P) Pn – 1 + P (1 – P) Pn – 2  n ≥ 3,
and ,

IIT 2000
1040

Let P be a point on the parabola y2 = 8x which is at a minimum distance from the centre C of the circle x2 + (y + 6)2 = 1. Then the equation of the circle passing through C and having its centre at P is

a) x2 + y2 – 4x + 8y + 12 = 0

b) x2 + y2 –x + 4y − 12 = 0

c) x2 + y2 –x + 2y − 24 = 0

d) x2 + y2 – 4x + 9y + 18 = 0

Let P be a point on the parabola y2 = 8x which is at a minimum distance from the centre C of the circle x2 + (y + 6)2 = 1. Then the equation of the circle passing through C and having its centre at P is

a) x2 + y2 – 4x + 8y + 12 = 0

b) x2 + y2 –x + 4y − 12 = 0

c) x2 + y2 –x + 2y − 24 = 0

d) x2 + y2 – 4x + 9y + 18 = 0

IIT 2016
1041

Let  then points where f (x) is not differentiable is (are)

a) 0

b) 1

c) ± 1

d) 0, ± 1

Let  then points where f (x) is not differentiable is (are)

a) 0

b) 1

c) ± 1

d) 0, ± 1

IIT 2005
1042

The slope of the line touching both parabolas y2 = 4x and x2 = −32y is

a) 12

b) 32

c) 18

d) 23

The slope of the line touching both parabolas y2 = 4x and x2 = −32y is

a) 12

b) 32

c) 18

d) 23

IIT 2014
1043

Let PQ and RS be tangents at the extremities of the diameter PR of a circle of radius r. If PS and QR intersect at a point x on the circumference of the circle, then 2r equals

a)

b)

c)

d)

Let PQ and RS be tangents at the extremities of the diameter PR of a circle of radius r. If PS and QR intersect at a point x on the circumference of the circle, then 2r equals

a)

b)

c)

d)

IIT 2001
1044

Multiple choices

Let [x] denote the greatest integer less than or equal to x. If

f (x) = [xsinπx] then f(x) is

a) Continuous at x = 0

b) Continuous in  

c) f (x) is differentiable at x = 1

d) differentiable in

e) None of these

Multiple choices

Let [x] denote the greatest integer less than or equal to x. If

f (x) = [xsinπx] then f(x) is

a) Continuous at x = 0

b) Continuous in  

c) f (x) is differentiable at x = 1

d) differentiable in

e) None of these

IIT 1986
1045

Let  then

a)

b)

c)

d)

Let  then

a)

b)

c)

d)

IIT 1987
1046

Let a, r, s, t be non-zero real numbers. Let P(at2, 2at), Q, R(ar2, 2ar and S(as2, 2as) be distinct points on the parabola y2 = 4ax. Suppose PQ is the focal chord and QR and PK are parallel, where K is point (2a, 0)

The value of r is

a) 1t

b) t2+1t

c) 1t

d) t21t

Let a, r, s, t be non-zero real numbers. Let P(at2, 2at), Q, R(ar2, 2ar and S(as2, 2as) be distinct points on the parabola y2 = 4ax. Suppose PQ is the focal chord and QR and PK are parallel, where K is point (2a, 0)

The value of r is

a) 1t

b) t2+1t

c) 1t

d) t21t

IIT 2014
1047

Find all solutions of

a)

b)

c)

d)

Find all solutions of

a)

b)

c)

d)

IIT 1983
1048

Multiple choices

Which of the following functions are continuous on (0, π)

a) tanx

b)

c)

d)

Multiple choices

Which of the following functions are continuous on (0, π)

a) tanx

b)

c)

d)

IIT 1991
1049

One or more than one correct option

If the normals of the parabola y2 = 4x drawn at the end points of the latus rectum are tangents to the circle (x − 3)2 + (y + 2)2 = r2 then the value of r2 is

a) 4

b) 1

c) 2

d) 0

One or more than one correct option

If the normals of the parabola y2 = 4x drawn at the end points of the latus rectum are tangents to the circle (x − 3)2 + (y + 2)2 = r2 then the value of r2 is

a) 4

b) 1

c) 2

d) 0

IIT 2015
1050

Multiple choices

Let  for every real number x then

a) h (x) is continuous for all x

b) h is differentiable for all x

c)  for all x > 1

d) h is not differentiable for two values of x

Multiple choices

Let  for every real number x then

a) h (x) is continuous for all x

b) h is differentiable for all x

c)  for all x > 1

d) h is not differentiable for two values of x

IIT 1998

Play Selected  Login to save this search...