All BASICSTANDARDADVANCED

Question(s) from Search: IIT

Search Results Difficulty Solution
1026

(One or more correct answers)
If E and F are independent events such that 0 < P (E) < 1 and 0 < P (F) < 1 then

a) E and F are mutually exclusive

b) E and  are independent

c)  are independent

d)

(One or more correct answers)
If E and F are independent events such that 0 < P (E) < 1 and 0 < P (F) < 1 then

a) E and F are mutually exclusive

b) E and  are independent

c)  are independent

d)

IIT 1989
1027

A lot contains 20 articles. The probability that the lot contains exactly 2 defective articles is 0.4 and the probability that the lot contains exactly three defective articles is 0.6. Articles are drawn from the lot at random one by one without replacement and tested till defective articles are found. What is the probability that the testing will end at the 12th testing?

A lot contains 20 articles. The probability that the lot contains exactly 2 defective articles is 0.4 and the probability that the lot contains exactly three defective articles is 0.6. Articles are drawn from the lot at random one by one without replacement and tested till defective articles are found. What is the probability that the testing will end at the 12th testing?

IIT 1986
1028

The points  in the complex plane are the vertices of a parallelogram if and only if

a)

b)

c)

d) None of these

The points  in the complex plane are the vertices of a parallelogram if and only if

a)

b)

c)

d) None of these

IIT 1983
1029

If ω(≠1) is a cube root of unity and  then A and B are respectively

a) 0, 1

b) 1, 1

c) 1, 0

d) – 1, 1

If ω(≠1) is a cube root of unity and  then A and B are respectively

a) 0, 1

b) 1, 1

c) 1, 0

d) – 1, 1

IIT 1995
1030

Let V be the volume of the parallelepiped formed by the vectors  and . If ar, br, cr where r = 1, 2, 3 are non-negative real numbers and , show that V ≤ L3

Let V be the volume of the parallelepiped formed by the vectors  and . If ar, br, cr where r = 1, 2, 3 are non-negative real numbers and , show that V ≤ L3

IIT 2002
1031

The locus of the midpoint of a chord of the circle  which subtend a right angle at the origin is

a)

b)

c)

d)

The locus of the midpoint of a chord of the circle  which subtend a right angle at the origin is

a)

b)

c)

d)

IIT 1984
1032

If the normal to the curve y = f(x) at the point (3, 4) makes an angle  with the positive X–axis then

a) – 1

b)

c)

d) 1

If the normal to the curve y = f(x) at the point (3, 4) makes an angle  with the positive X–axis then

a) – 1

b)

c)

d) 1

IIT 2000
1033

A circle passes through points A, B and C with the line segment AC as its diameter. A line passing through A intersects the chord BC at D inside the circle. If ∠DAB and ∠CAB are α and β respectively and the distance between the point A and the midpoint of the line segment DC is d, prove that the area of the circle is
 

A circle passes through points A, B and C with the line segment AC as its diameter. A line passing through A intersects the chord BC at D inside the circle. If ∠DAB and ∠CAB are α and β respectively and the distance between the point A and the midpoint of the line segment DC is d, prove that the area of the circle is
 

IIT 1996
1034

C1 and C2 are two concentric circles, the radius of C2 being twice of C1 . From a point on C2 tangents PA and PB are drawn to C1. Prove that the centroid of ΔPAB lies on C1.

C1 and C2 are two concentric circles, the radius of C2 being twice of C1 . From a point on C2 tangents PA and PB are drawn to C1. Prove that the centroid of ΔPAB lies on C1.

IIT 1998
1035

In [0, 1], Lagrange’s Mean Value theorem is not applicable to

a)

b)

c)

d)

In [0, 1], Lagrange’s Mean Value theorem is not applicable to

a)

b)

c)

d)

IIT 2003
1036

For a positive integer n, define
 then

a) a(100) ≤ 100

b) a(100) > 100

c) a(200) ≤ 100

d) a(200) > 100

For a positive integer n, define
 then

a) a(100) ≤ 100

b) a(100) > 100

c) a(200) ≤ 100

d) a(200) > 100

IIT 1999
1037

If p is a natural number then prove that pn + 1 + (p + 1)2n – 1 is divisible by p2 + p + 1 for every positive integer n.

If p is a natural number then prove that pn + 1 + (p + 1)2n – 1 is divisible by p2 + p + 1 for every positive integer n.

IIT 1984
1038

Prove by mathematical induction that
 for every positive integer n.

Prove by mathematical induction that
 for every positive integer n.

IIT 1987
1039

Prove that  is an integer for every positive integer.

Prove that  is an integer for every positive integer.

IIT 1990
1040

Let a, b, c be positive real numbers such that b2 – 4ac > 0 and let α1 = c. Prove by induction that
 

Is well defined and  for n=1, 2, …

Here well defined means that the denominator in the expression of  is not zero.

Let a, b, c be positive real numbers such that b2 – 4ac > 0 and let α1 = c. Prove by induction that
 

Is well defined and  for n=1, 2, …

Here well defined means that the denominator in the expression of  is not zero.

IIT 2001
1041

Solve the following equation for x
 

a) −1

b)

c) 0

d) −1 and

Solve the following equation for x
 

a) −1

b)

c) 0

d) −1 and

IIT 1978
1042

Let E = {1, 2, 3, 4} and F = {1, 2} then the number of onto functions from E to F is

a) 14

b) 16

c) 12

d) 8

Let E = {1, 2, 3, 4} and F = {1, 2} then the number of onto functions from E to F is

a) 14

b) 16

c) 12

d) 8

IIT 2001
1043

Which of the following pieces of data does not uniquely determine an acute angled triangle ABC (R being the radius of the circumcircle).

a) a, sinA, sinB

b) a, b , c

c) a, sinB, R

d) a, sinA, R

Which of the following pieces of data does not uniquely determine an acute angled triangle ABC (R being the radius of the circumcircle).

a) a, sinA, sinB

b) a, b , c

c) a, sinB, R

d) a, sinA, R

IIT 2002
1044

Find the natural number a for which
  
where the function f satisfies the relation f (x + y) = f (x) . f (y)
for all natural numbers x and y and further f (1) = 2

a) 1

b) 2

c) 3

d) 4

Find the natural number a for which
  
where the function f satisfies the relation f (x + y) = f (x) . f (y)
for all natural numbers x and y and further f (1) = 2

a) 1

b) 2

c) 3

d) 4

IIT 1992
1045

In Δ ABC the median to the side BC is of length  and divides ∠A into 30° and 45°. Then find the length of side BC.

a) 1

b) 2

c)

d)

In Δ ABC the median to the side BC is of length  and divides ∠A into 30° and 45°. Then find the length of side BC.

a) 1

b) 2

c)

d)

IIT 1985
1046

If f is an even function defined on (−5, 5) then the real values of x satisfying the equation f (x) =  are ……………

a)

b)

c)

d)

If f is an even function defined on (−5, 5) then the real values of x satisfying the equation f (x) =  are ……………

a)

b)

c)

d)

IIT 1996
1047

The number of all possible triplets  such that
 for all x is

a) Zero

b) One

c) Three

d) Infinite

e) None

The number of all possible triplets  such that
 for all x is

a) Zero

b) One

c) Three

d) Infinite

e) None

IIT 1987
1048

Two rays in the first quadrant x + y = |a| and ax – y = 1 intersect each other in the interval a ε (a0, ∞). The value of a0 is

Two rays in the first quadrant x + y = |a| and ax – y = 1 intersect each other in the interval a ε (a0, ∞). The value of a0 is

IIT 2006
1049

then tan t =

then tan t =

IIT 2006
1050

The domain of the function y(x) given by the equation  is

a) 0 < x ≤ 1

b) 0 ≤ x ≤ 1

c)  < x ≤ 0

d)  < x < 1

The domain of the function y(x) given by the equation  is

a) 0 < x ≤ 1

b) 0 ≤ x ≤ 1

c)  < x ≤ 0

d)  < x < 1

IIT 2000

Play Selected  Login to save this search...