All BASICSTANDARDADVANCED

Question(s) from Search: IIT

Search Results Difficulty Solution
1026

Let f (x) be defined on the interval  such that

 

g (x) = f (|x|) + |f(x)|

Test the differentiability of g (x) in

a) g(x) is differentiable at all x  ℝ

b) g(x) is differentiable at all x  ℝ except at x = 1

c) g(x) is differentiable at all x  ℝ except at x = 0, 1

d) g(x) is differentiable at all x  ℝ except at x = 0, 1, 2

Let f (x) be defined on the interval  such that

 

g (x) = f (|x|) + |f(x)|

Test the differentiability of g (x) in

a) g(x) is differentiable at all x  ℝ

b) g(x) is differentiable at all x  ℝ except at x = 1

c) g(x) is differentiable at all x  ℝ except at x = 0, 1

d) g(x) is differentiable at all x  ℝ except at x = 0, 1, 2

IIT 1986
1027

If the LCM of p, q is  where r, s, t are prime numbers and p, q are positive integers then the number of ordered pairs (p, q) is

a) 252

b) 254

c) 225

d) 224

If the LCM of p, q is  where r, s, t are prime numbers and p, q are positive integers then the number of ordered pairs (p, q) is

a) 252

b) 254

c) 225

d) 224

IIT 2006
1028

Consider a family of circles passing through two fixed points A (3, 7) and B (6, 5). Show that the chords in which the circle  cuts the members of the family are concurrent at a point. Find the coordinates of this point.

Consider a family of circles passing through two fixed points A (3, 7) and B (6, 5). Show that the chords in which the circle  cuts the members of the family are concurrent at a point. Find the coordinates of this point.

IIT 1993
1029

In how many ways can a pack of 52 cards be divided into four groups of 13 cards each.

In how many ways can a pack of 52 cards be divided into four groups of 13 cards each.

IIT 1979
1030

In a triangle ABC, let ∠ C = . If r is the inradius and R is the circumradius of the triangle then 2(r+R) = ………….

a) a+b

b) b+c

c) c+a

d) a+b+c

In a triangle ABC, let ∠ C = . If r is the inradius and R is the circumradius of the triangle then 2(r+R) = ………….

a) a+b

b) b+c

c) c+a

d) a+b+c

IIT 2000
1031

Determine the values of x for which the following function fails to be continuous or differentiable.

 

Justify your answer.

a) f(x) is continuous and differentiable

b) f(x) is continuous everywhere but not differentiable at
x = 1, 2

c) f(x) is continuous everywhere but not differentiable at x = 2

d) f(x) is neither continuous nor differentiable at x = 1, 2

Determine the values of x for which the following function fails to be continuous or differentiable.

 

Justify your answer.

a) f(x) is continuous and differentiable

b) f(x) is continuous everywhere but not differentiable at
x = 1, 2

c) f(x) is continuous everywhere but not differentiable at x = 2

d) f(x) is neither continuous nor differentiable at x = 1, 2

IIT 1997
1032

Let  

And

where a and b are non-negative real numbers. Determine the composite function gof. If (gof)(x) is continuous for all real x, determine the values of a and b. Is gof differentiable at x = 0?

a) a = b = 0

b) a = 0, b = 1

c) a = 1, b = 0

d) a = b = 1

Let  

And

where a and b are non-negative real numbers. Determine the composite function gof. If (gof)(x) is continuous for all real x, determine the values of a and b. Is gof differentiable at x = 0?

a) a = b = 0

b) a = 0, b = 1

c) a = 1, b = 0

d) a = b = 1

IIT 2002
1033

Find the equation of the circle touching the line 2x + 3y + 1 = 0 at the point (1, −1) and is orthogonal to the circle which has the line segment having end points (0, −1) and (−2, 3) as diameter.

Find the equation of the circle touching the line 2x + 3y + 1 = 0 at the point (1, −1) and is orthogonal to the circle which has the line segment having end points (0, −1) and (−2, 3) as diameter.

IIT 2004
1034

Show that the value of  wherever defined

a) always lies between  and 3

b) never lies between  and 3

c) depends on the value of x

Show that the value of  wherever defined

a) always lies between  and 3

b) never lies between  and 3

c) depends on the value of x

IIT 1992
1035

                      

Show that f(x) is differentiable at the value of α = 1. Also,

a) b2 +c2 = 4

b) 4 b2  = 4 − c2  

c) 64 b2 = 4 − c2

d) 64 b2 = 4 + c2

                      

Show that f(x) is differentiable at the value of α = 1. Also,

a) b2 +c2 = 4

b) 4 b2  = 4 − c2  

c) 64 b2 = 4 − c2

d) 64 b2 = 4 + c2

IIT 2004
1036

The product of r consecutive natural numbers is divisible by r!

a) True

b) False

The product of r consecutive natural numbers is divisible by r!

a) True

b) False

IIT 1985
1037

The area bounded by the curve y = f(x), the X–axis and the ordinates x = 1, x = b is (b – 1) sin (3b + 4). Then f(x) is

a) (x – 1) cos (3x + b)

b) sin (3x + 4)

c) sin (3x + 4) + 3 (x – 1) cos (3x + 4)

d) none of these

The area bounded by the curve y = f(x), the X–axis and the ordinates x = 1, x = b is (b – 1) sin (3b + 4). Then f(x) is

a) (x – 1) cos (3x + b)

b) sin (3x + 4)

c) sin (3x + 4) + 3 (x – 1) cos (3x + 4)

d) none of these

IIT 2005
1038

The sum  where  equals

a) i

b) i – 1

c) – i

d) 0

The sum  where  equals

a) i

b) i – 1

c) – i

d) 0

IIT 1998
1039

Fill in the blank

The value of f (x) =  lies in the interval …………….

a)

b)

c)

d)

Fill in the blank

The value of f (x) =  lies in the interval …………….

a)

b)

c)

d)

IIT 1983
1040

Find the area bounded by the curve x2 = 4y and the straight line
x = 4y – 2.

a) 3/2

b) 3/4

c) 9/4

d) 9/8

Find the area bounded by the curve x2 = 4y and the straight line
x = 4y – 2.

a) 3/2

b) 3/4

c) 9/4

d) 9/8

IIT 1981
1041

If f(x) and g(x) are differentiable functions for 0 ≤ x ≤ 1 such that f(0) = 2, g(0) = 0, f(1) = 6, g(1) = 2 then show that there exists c satisfying 0 < c < 1 and .

a) 0 < c < 1 and

b) 0 < c < 1 and

c) 0 < c < 1 and

d) 0 < c < 1 and

If f(x) and g(x) are differentiable functions for 0 ≤ x ≤ 1 such that f(0) = 2, g(0) = 0, f(1) = 6, g(1) = 2 then show that there exists c satisfying 0 < c < 1 and .

a) 0 < c < 1 and

b) 0 < c < 1 and

c) 0 < c < 1 and

d) 0 < c < 1 and

IIT 1982
1042

Let a > 0, b > 0, c > 0 then both the roots of the equation  

a) are real and positive

b) have negative real parts

c) have positive real parts

d) none of these

Let a > 0, b > 0, c > 0 then both the roots of the equation  

a) are real and positive

b) have negative real parts

c) have positive real parts

d) none of these

IIT 1979
1043

If f(x) is a continuous function defined for 1 ≤ x ≤ 3. If f(x) takes rational values for all x and f(2) = 10 then f(1.5) = .  .  .  .

a) 2

b) 5

c) 10

d) 20

If f(x) is a continuous function defined for 1 ≤ x ≤ 3. If f(x) takes rational values for all x and f(2) = 10 then f(1.5) = .  .  .  .

a) 2

b) 5

c) 10

d) 20

IIT 1997
1044

If x, y, z are real and distinct then  is always

a) Non – negative

b) Non – positive

c) Zero

d) None of these

If x, y, z are real and distinct then  is always

a) Non – negative

b) Non – positive

c) Zero

d) None of these

IIT 2005
1045

Match the following
Let [x] denote the greatest integer less than or equal to x

Column 1

Column 2

i) x|x|

A)continuous in

ii)

B)Differentiable in

iii) x + [x]

C)Steadily increasing in

iv) |x – 1| + |x + 1|

D) Not differentiable at least at one point in

a) (i)→ A, B, C, (ii)→ A, D, (iii)→ C, D, (iv)→ A, B

b) (i)→ A, (ii)→ A, (iii)→ C, (iv)→ B

c) (i)→ B, (ii)→ D, (iii)→ C, (iv)→ A

d) (i)→ A, B, (ii)→ A, D, (iii)→ C, D, (iv)→ B

Match the following
Let [x] denote the greatest integer less than or equal to x

Column 1

Column 2

i) x|x|

A)continuous in

ii)

B)Differentiable in

iii) x + [x]

C)Steadily increasing in

iv) |x – 1| + |x + 1|

D) Not differentiable at least at one point in

a) (i)→ A, B, C, (ii)→ A, D, (iii)→ C, D, (iv)→ A, B

b) (i)→ A, (ii)→ A, (iii)→ C, (iv)→ B

c) (i)→ B, (ii)→ D, (iii)→ C, (iv)→ A

d) (i)→ A, B, (ii)→ A, D, (iii)→ C, D, (iv)→ B

IIT 2007
1046

(One or more than one correct answer)
If  are complex numbers such that  and  then the pair of complex numbers  and  satisfy

a)

b)

c)

d) None of these

(One or more than one correct answer)
If  are complex numbers such that  and  then the pair of complex numbers  and  satisfy

a)

b)

c)

d) None of these

IIT 1985
1047

Let ABCD be a square with side of length 2 units. C2 is the circle through the vertices A, B, C, D and C1 is the circle touching all the sides of the square ABCD. L is a line through A.

A line M is drawn through A parallel to BD. Point S moves such that the distance from the line BD and the vertex A are equal. If the locus of S cuts M at T2 and T3 and AC at T1, then find the area of △T1T2T3.

Let ABCD be a square with side of length 2 units. C2 is the circle through the vertices A, B, C, D and C1 is the circle touching all the sides of the square ABCD. L is a line through A.

A line M is drawn through A parallel to BD. Point S moves such that the distance from the line BD and the vertex A are equal. If the locus of S cuts M at T2 and T3 and AC at T1, then find the area of △T1T2T3.

IIT 2006
1048

Express  in the form A + iB

a)

b)

c)

d)

Express  in the form A + iB

a)

b)

c)

d)

IIT 1979
1049

Find the area bounded by the curves
 

a) 1/6

b) 1/3

c) π

d)

Find the area bounded by the curves
 

a) 1/6

b) 1/3

c) π

d)

IIT 1986
1050

If the line x – 1 = 0 is the directrix of the parabola y2 – kx + 8 = 0, then one of the values of k is

a)

b) 8

c) 4

d)

If the line x – 1 = 0 is the directrix of the parabola y2 – kx + 8 = 0, then one of the values of k is

a)

b) 8

c) 4

d)

IIT 2000

Play Selected  Login to save this search...