All BASICSTANDARDADVANCED

Question(s) from Search: IIT

Search Results Difficulty Solution
1001

A and B are two separate reservoirs of water. Capacity of reservoir A is double the capacity of reservoir B. Both the reservoirs are filled completely with water, their inlets are closed and then water is released simultaneously from both the reservoirs. The rate of flow of water out of each reservoir at any instant of time is proportionate to the quantity of water in the reservoir at the time. One hour after the water is released the quantity of water in reservoir A is   times the quantity of water in reservoir B. After how many hours do both the reservoirs have the same quantity of water?

a)

b)

c) ln2

d)  

A and B are two separate reservoirs of water. Capacity of reservoir A is double the capacity of reservoir B. Both the reservoirs are filled completely with water, their inlets are closed and then water is released simultaneously from both the reservoirs. The rate of flow of water out of each reservoir at any instant of time is proportionate to the quantity of water in the reservoir at the time. One hour after the water is released the quantity of water in reservoir A is   times the quantity of water in reservoir B. After how many hours do both the reservoirs have the same quantity of water?

a)

b)

c) ln2

d)  

IIT 1997
1002

The area of the quadrilateral formed by the tangents at the end points of latus rectum to the ellipse  is

a)  square units

b)

c)  square units

d) 27 square units

The area of the quadrilateral formed by the tangents at the end points of latus rectum to the ellipse  is

a)  square units

b)

c)  square units

d) 27 square units

IIT 2003
1003

Let –1 ≤ p ≤ 1. Show that the equation 4x3 – 3x – p = 0 has a unique root in the interval  and identify it.

a) p

b) p/3

c)

d)

Let –1 ≤ p ≤ 1. Show that the equation 4x3 – 3x – p = 0 has a unique root in the interval  and identify it.

a) p

b) p/3

c)

d)

IIT 2001
1004

Find the coordinates of all points P on the ellipse , for which the area of △PON is maximum where O denotes the origin and N the feet of perpendicular from O to the tangent at P.

Find the coordinates of all points P on the ellipse , for which the area of △PON is maximum where O denotes the origin and N the feet of perpendicular from O to the tangent at P.

IIT 1999
1005

Determine the equation of the curve passing through origin in the form  which satisfies the differential equation

Determine the equation of the curve passing through origin in the form  which satisfies the differential equation

IIT 1996
1006

If α, β are roots of  and γ, δ are roots of  then evaluate  in terms of p, q, r, s.

If α, β are roots of  and γ, δ are roots of  then evaluate  in terms of p, q, r, s.

IIT 1979
1007

If p(x) = 51x101 – 2323x100 – 45x + 1035, using Rolle’s theorem prove that at least one root lies between .

If p(x) = 51x101 – 2323x100 – 45x + 1035, using Rolle’s theorem prove that at least one root lies between .

IIT 2004
1008

For what values of m does the system of equations 3x + my = m, 2x – 5y = 20 have solutions satisfying x > 0, y > 0?

a) m ε (

b) m ε (

c) m ε ( ∪ (

d) m ε (

For what values of m does the system of equations 3x + my = m, 2x – 5y = 20 have solutions satisfying x > 0, y > 0?

a) m ε (

b) m ε (

c) m ε ( ∪ (

d) m ε (

IIT 1980
1009

Given

 
and f(x) is a quadratic polynomial. V is a point of maximum of f(x) and ‘A’ is the point where f(x) cuts the X–axis. ‘B’ is a point such that AB subtends a right angle at V. Find the area between chord AB and f(x).

a) 125

b) 125/2

c) 125/3

d) 125/6

Given

 
and f(x) is a quadratic polynomial. V is a point of maximum of f(x) and ‘A’ is the point where f(x) cuts the X–axis. ‘B’ is a point such that AB subtends a right angle at V. Find the area between chord AB and f(x).

a) 125

b) 125/2

c) 125/3

d) 125/6

IIT 2005
1010

The area enclosed within the curve |x| + |y| = 1 is .  .  .

a) 1

b)

c)

d) 2

The area enclosed within the curve |x| + |y| = 1 is .  .  .

a) 1

b)

c)

d) 2

IIT 1981
1011

Let a hyperbola pass through the foci of the ellipse  . The transverse and conjugate axes of the hyperbola coincide with the major and minor axes of the given ellipse. Also the product of the eccentricity of the given ellipse and hyperbola is 1 then

a) Equation of the hyperbola is

b) Equation of the hyperbola is

c) Focus of the hyperbola is (5, 0)

d) Vertex of the hyperbola is

Let a hyperbola pass through the foci of the ellipse  . The transverse and conjugate axes of the hyperbola coincide with the major and minor axes of the given ellipse. Also the product of the eccentricity of the given ellipse and hyperbola is 1 then

a) Equation of the hyperbola is

b) Equation of the hyperbola is

c) Focus of the hyperbola is (5, 0)

d) Vertex of the hyperbola is

IIT 2006
1012

The integral 24logx2logx2+log(x212x+36)dx

is equal to

a) 2

b) 4

c) 1

d) 6

The integral 24logx2logx2+log(x212x+36)dx

is equal to

a) 2

b) 4

c) 1

d) 6

IIT 2015
1013

Fifteen coupons are numbered 1, 2, 3, .  .  .   ., 15 respectively. Seven coupons are selected at random one at a time with replacement. The probability that the largest number appearing on a selected coupon is 9 is

a)

b)

c)

d) None of these

Fifteen coupons are numbered 1, 2, 3, .  .  .   ., 15 respectively. Seven coupons are selected at random one at a time with replacement. The probability that the largest number appearing on a selected coupon is 9 is

a)

b)

c)

d) None of these

IIT 1983
1014

Match the statement of column 1 and the properties of column 2

Column 1

Column 2

i) Two intersecting circles

A. Have a common tangent

ii) Two mutually external circles

B. Have a common normal

iii) Two circles one strictly inside the other

C. Do not have a common tangent

iv) Two branches of a hyperbola

D. Do not have  a common normal

Match the statement of column 1 and the properties of column 2

Column 1

Column 2

i) Two intersecting circles

A. Have a common tangent

ii) Two mutually external circles

B. Have a common normal

iii) Two circles one strictly inside the other

C. Do not have a common tangent

iv) Two branches of a hyperbola

D. Do not have  a common normal

IIT 2007
1015

The value of the integral log2log3xsinx2sinx2+sin(log6x2)dx

is equal to

a) 14log32

b) 12log32

c) log32

d) 16log32

The value of the integral log2log3xsinx2sinx2+sin(log6x2)dx

is equal to

a) 14log32

b) 12log32

c) log32

d) 16log32

IIT 2011
1016

Let g(x) be a function of x defined on (−1, 1). If the area of the equilateral triangle with two of its vertices as (0, 0) and [x, g(x)] is , then the function g(x) is

a)

b)

c)

d) None of the above

Let g(x) be a function of x defined on (−1, 1). If the area of the equilateral triangle with two of its vertices as (0, 0) and [x, g(x)] is , then the function g(x) is

a)

b)

c)

d) None of the above

IIT 1989
1017

Show that the integral of   is

Show that the integral of   is

IIT 1979
1018

A circle C of radius 1 is inscribed in an equilateral triangle PQR. The point of contacts of C with its sides PQ, QR and RP are D, E, F respectively. The line PQ is given by  and the point D is . Further, it is given that the origin and the centre of C are on the same side of the line PQ. The equation of circle C is

a)

b)

c)

d)

A circle C of radius 1 is inscribed in an equilateral triangle PQR. The point of contacts of C with its sides PQ, QR and RP are D, E, F respectively. The line PQ is given by  and the point D is . Further, it is given that the origin and the centre of C are on the same side of the line PQ. The equation of circle C is

a)

b)

c)

d)

IIT 2008
1019

One or more than one correct options

Let F : ℝ → (0, 1) be a continuous function. Then which of the following function(s) has (have) the value zero at some point in the interval (0, 1)?

a) ex0xf(t)sintdt

b) f(x)+0π2f(t)sintdt

c) x0π2xf(t)costdt

d) x9f(x)

One or more than one correct options

Let F : ℝ → (0, 1) be a continuous function. Then which of the following function(s) has (have) the value zero at some point in the interval (0, 1)?

a) ex0xf(t)sintdt

b) f(x)+0π2f(t)sintdt

c) x0π2xf(t)costdt

d) x9f(x)

IIT 2017
1020

Consider a branch of the hyperbola
 
with vertex at the point A. Let B be one of the end points of its latus rectum. If C is the focus of the hyperbola nearest to the point A, then the area of triangle ABC is

a)

b)

c)

d)

Consider a branch of the hyperbola
 
with vertex at the point A. Let B be one of the end points of its latus rectum. If C is the focus of the hyperbola nearest to the point A, then the area of triangle ABC is

a)

b)

c)

d)

IIT 2008
1021

One or more than one correct options

The value(s) of 01x4(1x)41+x2dx

is (are)

a) 227π

b) 2105

c) 0

d) 71153π2

One or more than one correct options

The value(s) of 01x4(1x)41+x2dx

is (are)

a) 227π

b) 2105

c) 0

d) 71153π2

IIT 2010
1022

 =

a) True

b) False

 =

a) True

b) False

IIT 1986
1023

For non-zero vectors a, b, c,  holds if and only if

a) a . b = 0, b . c = 0

b) b . c = 0, c . a = 0

c) c . a = 0, a . b = 0

d) a . b = 0, b . c = 0, c . a = 0

For non-zero vectors a, b, c,  holds if and only if

a) a . b = 0, b . c = 0

b) b . c = 0, c . a = 0

c) c . a = 0, a . b = 0

d) a . b = 0, b . c = 0, c . a = 0

IIT 1982
1024

223x21+exdx

equals

a) 8

b) 2

c) 4

d) 0

223x21+exdx

equals

a) 8

b) 2

c) 4

d) 0

IIT 2014
1025

The value of 014x3[d2dx2(1x2)5]dx

is

a) 4

b) 0

c) 2

d) 6

The value of 014x3[d2dx2(1x2)5]dx

is

a) 4

b) 0

c) 2

d) 6

IIT 2014

Play Selected  Login to save this search...