All BASICSTANDARDADVANCED

Question(s) from Search: IIT

Search Results Difficulty Solution
1001

Use mathematical induction to prove: If n is an odd positive integer
then  is divisible by 24.

Use mathematical induction to prove: If n is an odd positive integer
then  is divisible by 24.

IIT 1983
1002

Let PS is the median of the triangle with vertices P(2, 2), Q(6, −1) and R(7, 3), then the equation of the line passing through (1, −1) and parallel to PS is

a) 4x – 7y – 11 = 0

b) 2x + 9y + 7 = 0

c) 4x + 7y + 3 = 0

d) 2x – 9y – 11 = 0

Let PS is the median of the triangle with vertices P(2, 2), Q(6, −1) and R(7, 3), then the equation of the line passing through (1, −1) and parallel to PS is

a) 4x – 7y – 11 = 0

b) 2x + 9y + 7 = 0

c) 4x + 7y + 3 = 0

d) 2x – 9y – 11 = 0

IIT 2014
1003

One or more than one correct option

For a > b > c > 0, the distance between (1, 1) and the point of intersection of the lines ax + by + c = 0 and bx + ay + c = 0 is less than 22

, then

a) a + b – c > 0

b) a − b + c < 0

c) a − b + c > 0

d) a + b – c < 0

One or more than one correct option

For a > b > c > 0, the distance between (1, 1) and the point of intersection of the lines ax + by + c = 0 and bx + ay + c = 0 is less than 22

, then

a) a + b – c > 0

b) a − b + c < 0

c) a − b + c > 0

d) a + b – c < 0

IIT 2014
1004

Using mathematical induction, prove that
 
m, n, k are positive integers and  for p < q

Using mathematical induction, prove that
 
m, n, k are positive integers and  for p < q

IIT 1989
1005

If one of the diameters of the circle, given by the equation x2 + y2 – 4x + 6y – 12 = 0 is a chord of a circle S whose centre is at (−3, 2), then the radius of S is

a) 52

b) 53

c) 5

d) 10

If one of the diameters of the circle, given by the equation x2 + y2 – 4x + 6y – 12 = 0 is a chord of a circle S whose centre is at (−3, 2), then the radius of S is

a) 52

b) 53

c) 5

d) 10

IIT 2016
1006

If  for all k ≥ n then show that

If  for all k ≥ n then show that

IIT 1992
1007

The function  (where [y] is the greatest integer less than or equal to y) is discontinuous at

a) All integers

b) All integers except 0 and 1

c) All integers except 0

d) All integers except 1

The function  (where [y] is the greatest integer less than or equal to y) is discontinuous at

a) All integers

b) All integers except 0 and 1

c) All integers except 0

d) All integers except 1

IIT 1999
1008

One or more than one correct option

Let RS be a diameter of the circle x2 + y2 = 1 where S is the point (1, 0). Let P be a variable point (other than R and S) on the circle and the tangents to the circle at S and P meet at the point Q. The normal to the circle at P intersect a line drawn through Q parallel to RS at a point E. Then the locus of E passes through the point(s)

a) (13,13)

b) (14,12)

c) (13,13)

d) (14,12)

One or more than one correct option

Let RS be a diameter of the circle x2 + y2 = 1 where S is the point (1, 0). Let P be a variable point (other than R and S) on the circle and the tangents to the circle at S and P meet at the point Q. The normal to the circle at P intersect a line drawn through Q parallel to RS at a point E. Then the locus of E passes through the point(s)

a) (13,13)

b) (14,12)

c) (13,13)

d) (14,12)

IIT 2016
1009

If x is not an integral multiple of 2π use mathematical induction to prove that
 

If x is not an integral multiple of 2π use mathematical induction to prove that
 

IIT 1994
1010

A circle passing through (1, −2) and touching the axis of X at (3, 0) also passes through the point

a) (−5, 2)

b) (2, −5)

c) (5, −2)

d) (−2, 5)

A circle passing through (1, −2) and touching the axis of X at (3, 0) also passes through the point

a) (−5, 2)

b) (2, −5)

c) (5, −2)

d) (−2, 5)

IIT 2013
1011

The circles  and  intersect each other in distinct points if

a) r < 2

b) r > 8

c) 2 < r < 8

d) 2 ≤ r ≤ 8

The circles  and  intersect each other in distinct points if

a) r < 2

b) r > 8

c) 2 < r < 8

d) 2 ≤ r ≤ 8

IIT 1994
1012

Prove by induction that
Pn = Aαn + Bβn for all n ≥ 1
Where α and β are roots of the quadratic equation
x2 – (1 – P) x – P (1 – P) = 0,
P1 = 1, P2 = 1 – P2, .  .  .,
Pn = (1 – P) Pn – 1 + P (1 – P) Pn – 2  n ≥ 3,
and ,

Prove by induction that
Pn = Aαn + Bβn for all n ≥ 1
Where α and β are roots of the quadratic equation
x2 – (1 – P) x – P (1 – P) = 0,
P1 = 1, P2 = 1 – P2, .  .  .,
Pn = (1 – P) Pn – 1 + P (1 – P) Pn – 2  n ≥ 3,
and ,

IIT 2000
1013

Let P be a point on the parabola y2 = 8x which is at a minimum distance from the centre C of the circle x2 + (y + 6)2 = 1. Then the equation of the circle passing through C and having its centre at P is

a) x2 + y2 – 4x + 8y + 12 = 0

b) x2 + y2 –x + 4y − 12 = 0

c) x2 + y2 –x + 2y − 24 = 0

d) x2 + y2 – 4x + 9y + 18 = 0

Let P be a point on the parabola y2 = 8x which is at a minimum distance from the centre C of the circle x2 + (y + 6)2 = 1. Then the equation of the circle passing through C and having its centre at P is

a) x2 + y2 – 4x + 8y + 12 = 0

b) x2 + y2 –x + 4y − 12 = 0

c) x2 + y2 –x + 2y − 24 = 0

d) x2 + y2 – 4x + 9y + 18 = 0

IIT 2016
1014

Let  then points where f (x) is not differentiable is (are)

a) 0

b) 1

c) ± 1

d) 0, ± 1

Let  then points where f (x) is not differentiable is (are)

a) 0

b) 1

c) ± 1

d) 0, ± 1

IIT 2005
1015

The slope of the line touching both parabolas y2 = 4x and x2 = −32y is

a) 12

b) 32

c) 18

d) 23

The slope of the line touching both parabolas y2 = 4x and x2 = −32y is

a) 12

b) 32

c) 18

d) 23

IIT 2014
1016

Let PQ and RS be tangents at the extremities of the diameter PR of a circle of radius r. If PS and QR intersect at a point x on the circumference of the circle, then 2r equals

a)

b)

c)

d)

Let PQ and RS be tangents at the extremities of the diameter PR of a circle of radius r. If PS and QR intersect at a point x on the circumference of the circle, then 2r equals

a)

b)

c)

d)

IIT 2001
1017

Multiple choices

Let [x] denote the greatest integer less than or equal to x. If

f (x) = [xsinπx] then f(x) is

a) Continuous at x = 0

b) Continuous in  

c) f (x) is differentiable at x = 1

d) differentiable in

e) None of these

Multiple choices

Let [x] denote the greatest integer less than or equal to x. If

f (x) = [xsinπx] then f(x) is

a) Continuous at x = 0

b) Continuous in  

c) f (x) is differentiable at x = 1

d) differentiable in

e) None of these

IIT 1986
1018

Let  then

a)

b)

c)

d)

Let  then

a)

b)

c)

d)

IIT 1987
1019

Let a, r, s, t be non-zero real numbers. Let P(at2, 2at), Q, R(ar2, 2ar and S(as2, 2as) be distinct points on the parabola y2 = 4ax. Suppose PQ is the focal chord and QR and PK are parallel, where K is point (2a, 0)

The value of r is

a) 1t

b) t2+1t

c) 1t

d) t21t

Let a, r, s, t be non-zero real numbers. Let P(at2, 2at), Q, R(ar2, 2ar and S(as2, 2as) be distinct points on the parabola y2 = 4ax. Suppose PQ is the focal chord and QR and PK are parallel, where K is point (2a, 0)

The value of r is

a) 1t

b) t2+1t

c) 1t

d) t21t

IIT 2014
1020

Find all solutions of

a)

b)

c)

d)

Find all solutions of

a)

b)

c)

d)

IIT 1983
1021

Multiple choices

Which of the following functions are continuous on (0, π)

a) tanx

b)

c)

d)

Multiple choices

Which of the following functions are continuous on (0, π)

a) tanx

b)

c)

d)

IIT 1991
1022

One or more than one correct option

If the normals of the parabola y2 = 4x drawn at the end points of the latus rectum are tangents to the circle (x − 3)2 + (y + 2)2 = r2 then the value of r2 is

a) 4

b) 1

c) 2

d) 0

One or more than one correct option

If the normals of the parabola y2 = 4x drawn at the end points of the latus rectum are tangents to the circle (x − 3)2 + (y + 2)2 = r2 then the value of r2 is

a) 4

b) 1

c) 2

d) 0

IIT 2015
1023

Multiple choices

Let  for every real number x then

a) h (x) is continuous for all x

b) h is differentiable for all x

c)  for all x > 1

d) h is not differentiable for two values of x

Multiple choices

Let  for every real number x then

a) h (x) is continuous for all x

b) h is differentiable for all x

c)  for all x > 1

d) h is not differentiable for two values of x

IIT 1998
1024

Number of divisors of the form 4n + 2(n ≥ 0) of integer 240 is

a) 4

b) 8

c) 10

d) 3

Number of divisors of the form 4n + 2(n ≥ 0) of integer 240 is

a) 4

b) 8

c) 10

d) 3

IIT 1998
1025

The smallest positive root of the equation tan x – x = 0 lies in

a)

b)

c)

d)

e) None of these

The smallest positive root of the equation tan x – x = 0 lies in

a)

b)

c)

d)

e) None of these

IIT 1987

Play Selected  Login to save this search...