All BASICSTANDARDADVANCED

Question(s) from Search: IIT

Search Results Difficulty Solution
1001

Find the derivative with respect to x of the function

 at x =

a)

b)

c)

d)

Find the derivative with respect to x of the function

 at x =

a)

b)

c)

d)

IIT 1984
1002

Let y(x) be the solution of the differential equation (xlnx)dydx+y=2xlnx,(x1)

. Given that y = 1 when x = 1, then y(e) is equal to

a) e

b) 0

c) 2

d) 2e

Let y(x) be the solution of the differential equation (xlnx)dydx+y=2xlnx,(x1)

. Given that y = 1 when x = 1, then y(e) is equal to

a) e

b) 0

c) 2

d) 2e

IIT 2015
1003

One or more than one correct options

If y(x) satisfies the differential equation y′ − ytanx = 2xsecx and y(0) = 0, then

a) y(π4)=π282

b) y(π4)=π218

c) y(π3)=π29

d) y(π3)=4π3+2π233

One or more than one correct options

If y(x) satisfies the differential equation y′ − ytanx = 2xsecx and y(0) = 0, then

a) y(π4)=π282

b) y(π4)=π218

c) y(π3)=π29

d) y(π3)=4π3+2π233

IIT 2012
1004

At present a firm is manufacturing 2000 items. It is estimated that the rate of change of production P with respect to additional number of workers x is given by dPdx=10012x

. If the firm employs 25 more workers then the new level of production of items is

a) 2500

b) 3000

c) 3500

d) 4500

At present a firm is manufacturing 2000 items. It is estimated that the rate of change of production P with respect to additional number of workers x is given by dPdx=10012x

. If the firm employs 25 more workers then the new level of production of items is

a) 2500

b) 3000

c) 3500

d) 4500

IIT 2013
1005

Let f(x) = (1 – x)2 sin2x + x2 and g(x)=1x(2(t1)t+1lnt)f(t)dt

Which of the following is true?

a) g is increasing on (1, ∞)

b) g is decreasing on (1, ∞)

c) g is increasing on (1, 2) and decreasing on (2, ∞)

d) g is decreasing on (1, 2) and increasing on (2, ∞)

Let f(x) = (1 – x)2 sin2x + x2 and g(x)=1x(2(t1)t+1lnt)f(t)dt

Which of the following is true?

a) g is increasing on (1, ∞)

b) g is decreasing on (1, ∞)

c) g is increasing on (1, 2) and decreasing on (2, ∞)

d) g is decreasing on (1, 2) and increasing on (2, ∞)

IIT 2013
1006

Given
 
 
Prove that
 

Given
 
 
Prove that
 

IIT 1984
1007

Using mathematical induction, prove that

 for n > 1

Using mathematical induction, prove that

 for n > 1

IIT 1986
1008

Let p ≥ 3 be an integer and α, β be the roots of x2 – (p + 1) x + 1 = 0. Using mathematical induction show that αn + βn
i) is an integer
ii) and is not divisible by p.

Let p ≥ 3 be an integer and α, β be the roots of x2 – (p + 1) x + 1 = 0. Using mathematical induction show that αn + βn
i) is an integer
ii) and is not divisible by p.

IIT 1992
1009

If x is not an integral multiple of 2π use mathematical induction to prove that
 

If x is not an integral multiple of 2π use mathematical induction to prove that
 

IIT 1994
1010

Prove by induction that
Pn = Aαn + Bβn for all n ≥ 1
Where α and β are roots of the quadratic equation
x2 – (1 – P) x – P (1 – P) = 0,
P1 = 1, P2 = 1 – P2, .  .  .,
Pn = (1 – P) Pn – 1 + P (1 – P) Pn – 2  n ≥ 3,
and ,

Prove by induction that
Pn = Aαn + Bβn for all n ≥ 1
Where α and β are roots of the quadratic equation
x2 – (1 – P) x – P (1 – P) = 0,
P1 = 1, P2 = 1 – P2, .  .  .,
Pn = (1 – P) Pn – 1 + P (1 – P) Pn – 2  n ≥ 3,
and ,

IIT 2000
1011

Find all solutions of

a)

b)

c)

d)

Find all solutions of

a)

b)

c)

d)

IIT 1983
1012

In a triangle ABC, let ∠ C = . If r is the inradius and R is the circumradius of the triangle then 2(r+R) = ………….

a) a+b

b) b+c

c) c+a

d) a+b+c

In a triangle ABC, let ∠ C = . If r is the inradius and R is the circumradius of the triangle then 2(r+R) = ………….

a) a+b

b) b+c

c) c+a

d) a+b+c

IIT 2000
1013

Show that the value of  wherever defined

a) always lies between  and 3

b) never lies between  and 3

c) depends on the value of x

Show that the value of  wherever defined

a) always lies between  and 3

b) never lies between  and 3

c) depends on the value of x

IIT 1992
1014

Fill in the blank

The value of f (x) =  lies in the interval …………….

a)

b)

c)

d)

Fill in the blank

The value of f (x) =  lies in the interval …………….

a)

b)

c)

d)

IIT 1983
1015

Let a > 0, b > 0, c > 0 then both the roots of the equation  

a) are real and positive

b) have negative real parts

c) have positive real parts

d) none of these

Let a > 0, b > 0, c > 0 then both the roots of the equation  

a) are real and positive

b) have negative real parts

c) have positive real parts

d) none of these

IIT 1979
1016

If sinA sinB sinC + cosA cosB = 1then the value of sinC is

If sinA sinB sinC + cosA cosB = 1then the value of sinC is

IIT 2006
1017

A plane passes through (1, −2, 1) and is perpendicular to the two planes  and  The distance of the plane from the point (1, 2, 2) is.

A plane passes through (1, −2, 1) and is perpendicular to the two planes  and  The distance of the plane from the point (1, 2, 2) is.

IIT 2006
1018

The number of ordered pairs satisfying the equations
 is

a) 4

b) 2

c) 0

d) 1

The number of ordered pairs satisfying the equations
 is

a) 4

b) 2

c) 0

d) 1

IIT 2005
1019

Show that the sum of the first n terms of the series
12 + 2.22 + 32 + 2.42 + 52 + 2.62 + .  .  .
is  when n is even, and  when n is odd.

Show that the sum of the first n terms of the series
12 + 2.22 + 32 + 2.42 + 52 + 2.62 + .  .  .
is  when n is even, and  when n is odd.

IIT 1988
1020

Let U1 = 1, U2 = 1, Un + 2 = Un + 1 + Un, n > 1. Use mathematical induction to show that
 
for all integers n > 1

Let U1 = 1, U2 = 1, Un + 2 = Un + 1 + Un, n > 1. Use mathematical induction to show that
 
for all integers n > 1

IIT 1981
1021

Compute the area of the region bounded by the curves
y = exlnx and

a)

b)

c)

d)

Compute the area of the region bounded by the curves
y = exlnx and

a)

b)

c)

d)

IIT 1990
1022

What normal to the curve y = x2 forms the shortest normal?

a)

b)

c)

d) y = x + 1

What normal to the curve y = x2 forms the shortest normal?

a)

b)

c)

d) y = x + 1

IIT 1992
1023

The circle x2 + y2 = 1 cuts the X–axis at P and Q. Another circle with centre at Q and variable radius intersects the first circle at R above the X–axis and the line segment PQ at S. Find the maximum area of ΔQRS.

a)

b)

c)

d)

The circle x2 + y2 = 1 cuts the X–axis at P and Q. Another circle with centre at Q and variable radius intersects the first circle at R above the X–axis and the line segment PQ at S. Find the maximum area of ΔQRS.

a)

b)

c)

d)

IIT 1994
1024

From a point A common tangents are drawn to the circle  and the parabola . Find the area of the quadrilateral formed by the common tangents drawn from A and the chords of contact of the circle and the parabola.

From a point A common tangents are drawn to the circle  and the parabola . Find the area of the quadrilateral formed by the common tangents drawn from A and the chords of contact of the circle and the parabola.

IIT 1996
1025

Let
where a is a positive constant. Find the interval in which  is increasing.

a)

b)

c)

d)

Let
where a is a positive constant. Find the interval in which  is increasing.

a)

b)

c)

d)

IIT 1996

Play Selected  Login to save this search...