All BASICSTANDARDADVANCED

Question(s) from Search: IIT

Search Results Difficulty Solution
1001

Let S be the focus of the parabola y2 = 8x and PQ be the common chord of the circle x2 + y2 – 2x – 4y = 0 and the given parabola. The area of △QPS is

a) 2 sq. units

b) 4 sq. units

c) 6 sq. units

d) 8 sq. units

Let S be the focus of the parabola y2 = 8x and PQ be the common chord of the circle x2 + y2 – 2x – 4y = 0 and the given parabola. The area of △QPS is

a) 2 sq. units

b) 4 sq. units

c) 6 sq. units

d) 8 sq. units

IIT 2012
1002

Multiple choices

The function f (x) = 1 + |sinx| is

a) continuous nowhere

b) continuous everywhere

c) differentiable nowhere

d) not differentiable at x = 0

e) not differentiable at infinite number of points

Multiple choices

The function f (x) = 1 + |sinx| is

a) continuous nowhere

b) continuous everywhere

c) differentiable nowhere

d) not differentiable at x = 0

e) not differentiable at infinite number of points

IIT 1986
1003

Consider the parabola y2 = 8x. Let △1 be the area of the triangle formed by the end points of its latus rectum and the point P(12,2)

on the parabola and △2 be the area of the triangle formed by drawing tangent at P and the end points of the latus rectum. Then 12 is

Consider the parabola y2 = 8x. Let △1 be the area of the triangle formed by the end points of its latus rectum and the point P(12,2)

on the parabola and △2 be the area of the triangle formed by drawing tangent at P and the end points of the latus rectum. Then 12 is

IIT 2011
1004

Multiple choices

Let g (x) = x f (x), where   at x = 0

a) g is  but  is not continuous

b) g is  while f is not

c) f and g are both differentiable

d) g is  and  is continuous

Multiple choices

Let g (x) = x f (x), where   at x = 0

a) g is  but  is not continuous

b) g is  while f is not

c) f and g are both differentiable

d) g is  and  is continuous

IIT 1994
1005

A five digit number divisible by 3 is formed using the numerals 0, 1, 2, 3, 4, and 5 without repetition. Total number of ways this can be done is

a) At least 30

b) At most 20

c) Exactly 25

d) None of these

A five digit number divisible by 3 is formed using the numerals 0, 1, 2, 3, 4, and 5 without repetition. Total number of ways this can be done is

a) At least 30

b) At most 20

c) Exactly 25

d) None of these

IIT 1989
1006

A rectangle with sides (2m – 1) and (2n – 1) is divided into squares of unit length by drawing parallel lines. Then the number of rectangles possible with odd side lengths is

a) mn (m + 1)(n + 1)

b)

c)

d)

A rectangle with sides (2m – 1) and (2n – 1) is divided into squares of unit length by drawing parallel lines. Then the number of rectangles possible with odd side lengths is

a) mn (m + 1)(n + 1)

b)

c)

d)

IIT 2005
1007

If the normal to the curve y = f(x) at the point (3, 4) makes an angle  with the positive X–axis then

a) – 1

b)

c)

d) 1

If the normal to the curve y = f(x) at the point (3, 4) makes an angle  with the positive X–axis then

a) – 1

b)

c)

d) 1

IIT 2000
1008

A circle passes through points A, B and C with the line segment AC as its diameter. A line passing through A intersects the chord BC at D inside the circle. If ∠DAB and ∠CAB are α and β respectively and the distance between the point A and the midpoint of the line segment DC is d, prove that the area of the circle is
 

A circle passes through points A, B and C with the line segment AC as its diameter. A line passing through A intersects the chord BC at D inside the circle. If ∠DAB and ∠CAB are α and β respectively and the distance between the point A and the midpoint of the line segment DC is d, prove that the area of the circle is
 

IIT 1996
1009

Domain of definition of the function f (x) =  for real valued x is

a)

b)

c)

d)

Domain of definition of the function f (x) =  for real valued x is

a)

b)

c)

d)

IIT 2003
1010

Find the values of a and b, so that the functions

 

Is continuous for 0 ≤ x ≤ π

a)

b)

c)

d)

Find the values of a and b, so that the functions

 

Is continuous for 0 ≤ x ≤ π

a)

b)

c)

d)

IIT 1989
1011

C1 and C2 are two concentric circles, the radius of C2 being twice of C1 . From a point on C2 tangents PA and PB are drawn to C1. Prove that the centroid of ΔPAB lies on C1.

C1 and C2 are two concentric circles, the radius of C2 being twice of C1 . From a point on C2 tangents PA and PB are drawn to C1. Prove that the centroid of ΔPAB lies on C1.

IIT 1998
1012

In [0, 1], Lagrange’s Mean Value theorem is not applicable to

a)

b)

c)

d)

In [0, 1], Lagrange’s Mean Value theorem is not applicable to

a)

b)

c)

d)

IIT 2003
1013

Let α ε ℝ, then a function f : ℝ → ℝ is differentiable at α if and only if there is a function g : ℝ → ℝ which is continuous at α and satisfies f(x) – f(α) = g(x) (x – α) for all x ε ℝ.

a) True

b) False

Let α ε ℝ, then a function f : ℝ → ℝ is differentiable at α if and only if there is a function g : ℝ → ℝ which is continuous at α and satisfies f(x) – f(α) = g(x) (x – α) for all x ε ℝ.

a) True

b) False

IIT 2001
1014

The area bounded by the angle bisectors of the lines

x2 – y2 + 2y = 1 and the line x + y = 3 is

a) 2

b) 3

c) 4

d) 6

The area bounded by the angle bisectors of the lines

x2 – y2 + 2y = 1 and the line x + y = 3 is

a) 2

b) 3

c) 4

d) 6

IIT 2004
1015

If two functions f and g satisfy the given conditions  x, y ε ℝ, f(x – y) = f(x)g(y) – f(y)g(x) and g(x – y) = g(x) . g(y) + f(x) . f(y).

If the RHD at x = 0 exists for f(x) then find the derivative of g(x) at x = 0.

If two functions f and g satisfy the given conditions  x, y ε ℝ, f(x – y) = f(x)g(y) – f(y)g(x) and g(x – y) = g(x) . g(y) + f(x) . f(y).

If the RHD at x = 0 exists for f(x) then find the derivative of g(x) at x = 0.

IIT 2005
1016

Let

be a real valued function. The set of points where f(x) is not differentiable are

a) {0}

b) {1}

c) {0, 1}

d) {∅}

Let

be a real valued function. The set of points where f(x) is not differentiable are

a) {0}

b) {1}

c) {0, 1}

d) {∅}

IIT 1981
1017

Multiple choice

Let  and

 

Then g(x) has

a) Local maximum at x = 1 + ln2 and local minima at x = e

b) Local maximum at x = 1 and local minima at x = 2

c) No local maximas

d) No local minimas

Multiple choice

Let  and

 

Then g(x) has

a) Local maximum at x = 1 + ln2 and local minima at x = e

b) Local maximum at x = 1 and local minima at x = 2

c) No local maximas

d) No local minimas

IIT 2006
1018

For all x in [0, 1], let the second derivative  of a function f(x) exists and satisfies . If f(0) = f(1) then for all x ε [0, 1]

a)  

b)  

c) None of these

For all x in [0, 1], let the second derivative  of a function f(x) exists and satisfies . If f(0) = f(1) then for all x ε [0, 1]

a)  

b)  

c) None of these

IIT 1981
1019

Match the following

Let the function defined in column 1 have domain  and range ()

Column 1

Column 2

i) 1 + 2x

A) Onto but not one-one

ii) tan x

B) One-one but not onto

C) One-one and onto

D) Neither one

Match the following

Let the function defined in column 1 have domain  and range ()

Column 1

Column 2

i) 1 + 2x

A) Onto but not one-one

ii) tan x

B) One-one but not onto

C) One-one and onto

D) Neither one

IIT 1992
1020

Let f(x) = [x] where [.] denotes the greatest integer function. Then the domain of f is .  .  .  ., points of discontinuity of f are .  .  .  .

a) ∀ x ε I

b) ∀ x ε I − {0}

c) ∀ x ε I – {0, 1}

d) ∀ x ε I – {0, 1, 2}

Let f(x) = [x] where [.] denotes the greatest integer function. Then the domain of f is .  .  .  ., points of discontinuity of f are .  .  .  .

a) ∀ x ε I

b) ∀ x ε I − {0}

c) ∀ x ε I – {0, 1}

d) ∀ x ε I – {0, 1, 2}

IIT 1996
1021

PQ and PR are two infinite rays, QAR is an arc.

U


Points lying in the shaded region excluding the boundary satisfies

a)   |z + 1| > 2; |arg(z + 1)| <

b)   |z + 1| < 2; |arg(z + 1)| <

c)  

d)  

PQ and PR are two infinite rays, QAR is an arc.

U


Points lying in the shaded region excluding the boundary satisfies

a)   |z + 1| > 2; |arg(z + 1)| <

b)   |z + 1| < 2; |arg(z + 1)| <

c)  

d)  

IIT 2005
1022

If  for all positive x where a > 0 and b > 0 then

a) 9ab2 ≥ 4c3

b) 27ab2 ≥ 4c3

c) 9ab2 ≤ 4c3

d) 27ab2 ≤ 4c3

If  for all positive x where a > 0 and b > 0 then

a) 9ab2 ≥ 4c3

b) 27ab2 ≥ 4c3

c) 9ab2 ≤ 4c3

d) 27ab2 ≤ 4c3

IIT 1989
1023

Let ABCD be a square with side of length 2 units. C2 is the circle through the vertices A, B, C, D and C1 is the circle touching all the sides of the square ABCD. L is a line through A.

If P is a point on C1 and Q is another point on C2, then  is equal to

a) 0.75

b) 1.25

c) 1

d) 0.5

Let ABCD be a square with side of length 2 units. C2 is the circle through the vertices A, B, C, D and C1 is the circle touching all the sides of the square ABCD. L is a line through A.

If P is a point on C1 and Q is another point on C2, then  is equal to

a) 0.75

b) 1.25

c) 1

d) 0.5

IIT 2006
1024

If a continuous function f defined on the real line ℝ, assumes positive and negative values in ℝ then the equation f(x) = 0 has a root in ℝ. For example, it is known that if a continuous function f on ℝ is positive at some points and its minimum value is negative then the equation f(x) = 0 has a root in ℝ. Consider the function f(x) =  for all real x where k is a real constant.

The positive value of k for which  has only one root is

a)

b) 1

c) e

d) ln2

If a continuous function f defined on the real line ℝ, assumes positive and negative values in ℝ then the equation f(x) = 0 has a root in ℝ. For example, it is known that if a continuous function f on ℝ is positive at some points and its minimum value is negative then the equation f(x) = 0 has a root in ℝ. Consider the function f(x) =  for all real x where k is a real constant.

The positive value of k for which  has only one root is

a)

b) 1

c) e

d) ln2

IIT 2007
1025

Let . Find the intervals in which λ should lie in order that f(x) has exactly one minimum and exactly one maximum.

a)

b)

c)

d)

Let . Find the intervals in which λ should lie in order that f(x) has exactly one minimum and exactly one maximum.

a)

b)

c)

d)

IIT 1985

Play Selected  Login to save this search...