All BASICSTANDARDADVANCED

Question(s) from Search: IIT

Search Results Difficulty Solution
1001

The area of the quadrilateral formed by the tangents at the end points of latus rectum to the ellipse  is

a)  square units

b)

c)  square units

d) 27 square units

The area of the quadrilateral formed by the tangents at the end points of latus rectum to the ellipse  is

a)  square units

b)

c)  square units

d) 27 square units

IIT 2003
1002

The function f(x) = |px – q|+ r|x|, x  when p > 0, q > 0, r > 0 assumes minimum value only on one point if

a)  p ≠ q

b)  r ≠ q

c)  r ≠ p

d)  p = q = r

The function f(x) = |px – q|+ r|x|, x  when p > 0, q > 0, r > 0 assumes minimum value only on one point if

a)  p ≠ q

b)  r ≠ q

c)  r ≠ p

d)  p = q = r

IIT 1995
1003

Let b ≠ 0 and j = 0, 1, 2, .  .  . , n. Let Sj be the area of the region bounded by Y–axis and the curve
.

Show that S0, S1, S2, .  .  .  , Sn are in geometric progression. Also find the sum for a = − 1 and b = π.

a)

b)

c)

d)

Let b ≠ 0 and j = 0, 1, 2, .  .  . , n. Let Sj be the area of the region bounded by Y–axis and the curve
.

Show that S0, S1, S2, .  .  .  , Sn are in geometric progression. Also find the sum for a = − 1 and b = π.

a)

b)

c)

d)

IIT 2001
1004

A tangent to the ellipse x2 + 4y2 = 4 meets the ellipse x2 + 2y2 = 6 at P and Q. Prove that tangents at P and Q of the ellipse x2 + 2y2 = 6 are at right angles.

A tangent to the ellipse x2 + 4y2 = 4 meets the ellipse x2 + 2y2 = 6 at P and Q. Prove that tangents at P and Q of the ellipse x2 + 2y2 = 6 are at right angles.

IIT 1997
1005

Let f(θ) = sinθ (sinθ + sin3θ) then f(θ)

a) ≥ 0 only when θ ≥ 0

b)  ≤ 0 for all real θ

c)  ≥ 0 for all real θ

d) ≤ θ only when θ ≤ 0

Let f(θ) = sinθ (sinθ + sin3θ) then f(θ)

a) ≥ 0 only when θ ≥ 0

b)  ≤ 0 for all real θ

c)  ≥ 0 for all real θ

d) ≤ θ only when θ ≤ 0

IIT 2000
1006

Let y = f(x) is a cubic polynomial having maximum at x = − 1 and  has a minimum at x = 1 and f(−1) = 10, f(1) = − 6. Find the cubic polynomial and also find the distance between the points which are maxima or minima.

a)

b)

c)

d)

Let y = f(x) is a cubic polynomial having maximum at x = − 1 and  has a minimum at x = 1 and f(−1) = 10, f(1) = − 6. Find the cubic polynomial and also find the distance between the points which are maxima or minima.

a)

b)

c)

d)

IIT 2005
1007

Each of the following four inequalities given below define a region in the XY–plane. One of these four regions does not have the following property: For any two points (x1, y1) and (x2, y2) in the region, point  is also in the region. The inequality defining the region that does not have this property is

a) x2 + 2y2 ≤ 1

b) max (|x|, |y|) ≤ 1

c) x2 – y2 ≥ 1

d) y2 – x ≤ 0

Each of the following four inequalities given below define a region in the XY–plane. One of these four regions does not have the following property: For any two points (x1, y1) and (x2, y2) in the region, point  is also in the region. The inequality defining the region that does not have this property is

a) x2 + 2y2 ≤ 1

b) max (|x|, |y|) ≤ 1

c) x2 – y2 ≥ 1

d) y2 – x ≤ 0

IIT 1981
1008

The domain of definition of the function           is

a)  

b)  

c)  

d)  

The domain of definition of the function           is

a)  

b)  

c)  

d)  

IIT 2002
1009

The set of values of x which ln(1 + x) ≤ x is equal to .  .  .  .

a) (−∞, −1)

b) (−1, 0)

c) (0, 1)

d) (1, ∞)

The set of values of x which ln(1 + x) ≤ x is equal to .  .  .  .

a) (−∞, −1)

b) (−1, 0)

c) (0, 1)

d) (1, ∞)

IIT 1987
1010

For any positive integers m, n (with n ≥ m), we are given that
  
Deduce that
  

For any positive integers m, n (with n ≥ m), we are given that
  
Deduce that
  

IIT 2000
1011

If A and B are two independent events such that P (A) > 0 and P (B) ≠ 1 then  is equal to

a)

b)

c)

d)

If A and B are two independent events such that P (A) > 0 and P (B) ≠ 1 then  is equal to

a)

b)

c)

d)

IIT 1980
1012

If,  then g(f(x)) is invertible in the domain

a)

b)

c)

d)

If,  then g(f(x)) is invertible in the domain

a)

b)

c)

d)

IIT 2004
1013

Evaluate

a)

b)

c)

d)

Evaluate

a)

b)

c)

d)

IIT 2006
1014

Tangents are drawn to the circle  from a point on the hyperbola . Find the locus of the midpoint of the chord of contact.

Tangents are drawn to the circle  from a point on the hyperbola . Find the locus of the midpoint of the chord of contact.

IIT 2005
1015

The value of the integral π/2π/2(x2+logπxπ+x)cosxdx

is equal to

a) 0

b) π224

c) π22+4

d) π22

The value of the integral π/2π/2(x2+logπxπ+x)cosxdx

is equal to

a) 0

b) π224

c) π22+4

d) π22

IIT 2012
1016

Show that the integral of sinxsin2xsin3x + sec2xcos22x + sin4xcos4x is

 

 

Show that the integral of sinxsin2xsin3x + sec2xcos22x + sin4xcos4x is

 

 

IIT 1979
1017

Let P (x1, y1) and Q (x2, y2), y1 < 0, y2 < 0 be the end points of the latus rectum of the ellipse x2 + 4y2 = 4. The equations of the parabolas with latus rectum PQ are

a)

b)

c)

d)

Let P (x1, y1) and Q (x2, y2), y1 < 0, y2 < 0 be the end points of the latus rectum of the ellipse x2 + 4y2 = 4. The equations of the parabolas with latus rectum PQ are

a)

b)

c)

d)

IIT 2008
1018

Let F : ℝ → ℝ be a thrice differentiable function. Suppose that F(1) = 0, F(3) = −4 and F′(x) < 0 for all x ε (1, 3). Let f(x) = x F(x) for all x ε ℝ.If 13x2F(x)dx=12

and 13x3F(x)dx=40 , then the correct expression is/are

a) 9f(3)+f(1)32=0

b) 13f(x)dx=12

c) 9f(3)f(1)+32=0

d) 13f(x)dx=12

Let F : ℝ → ℝ be a thrice differentiable function. Suppose that F(1) = 0, F(3) = −4 and F′(x) < 0 for all x ε (1, 3). Let f(x) = x F(x) for all x ε ℝ.If 13x2F(x)dx=12

and 13x3F(x)dx=40 , then the correct expression is/are

a) 9f(3)+f(1)32=0

b) 13f(x)dx=12

c) 9f(3)f(1)+32=0

d) 13f(x)dx=12

IIT 2015
1019

 =

a) +c

b) +c

c) +c

d)

 =

a) +c

b) +c

c) +c

d)

IIT 1980
1020

Consider the points
P: (−sin (β – α), cosβ)
Q: (cos (β – α), sinβ)
R: (−cos{(β – α) + θ}, sin (β – θ))
where 0 < α, β, θ <  then

a) P lies on the line segment RQ

b) Q lies on the line segment PR

c) R lies on the line segment QP

d) P, Q, R are non–collinear

Consider the points
P: (−sin (β – α), cosβ)
Q: (cos (β – α), sinβ)
R: (−cos{(β – α) + θ}, sin (β – θ))
where 0 < α, β, θ <  then

a) P lies on the line segment RQ

b) Q lies on the line segment PR

c) R lies on the line segment QP

d) P, Q, R are non–collinear

IIT 2008
1021

One or more than one correct options

The options with the values of α and L that satisfy the equation 04πet[sin6αt+cos4αt]dt0πet[sin6αt+cos4αt]dt=L

is/are

a) α=2,L=e4π1eπ1

b) α=2,L=e4π+1eπ+1

c) α=4,L=e4π1eπ1

d) α=4,L=e4π+1eπ+1

One or more than one correct options

The options with the values of α and L that satisfy the equation 04πet[sin6αt+cos4αt]dt0πet[sin6αt+cos4αt]dt=L

is/are

a) α=2,L=e4π1eπ1

b) α=2,L=e4π+1eπ+1

c) α=4,L=e4π1eπ1

d) α=4,L=e4π+1eπ+1

IIT 2010
1022

The number of points in the interval [13,13]

in which f(x)=sin(x2)+cos(x2) attains its maximum value is

a) 8

b) 2

c) 4

d) 0

The number of points in the interval [13,13]

in which f(x)=sin(x2)+cos(x2) attains its maximum value is

a) 8

b) 2

c) 4

d) 0

IIT 2014
1023

If the integers m and n are chosen at random between 1 and 100 then the probability that a number of form  is divisible by 5, equals

a)

b)

c)

d)

If the integers m and n are chosen at random between 1 and 100 then the probability that a number of form  is divisible by 5, equals

a)

b)

c)

d)

IIT 1999
1024

Show that the integral
 =

 

where y = x1/6

Show that the integral
 =

 

where y = x1/6

IIT 1992
1025

If α=01e(9x+3tan1x)(12+9x21+x2)dx

Where tan1x takes only principal values then the value of (loge|1+α|3π4) is

a) 6

b) 9

c) 8

d) 11

If α=01e(9x+3tan1x)(12+9x21+x2)dx

Where tan1x takes only principal values then the value of (loge|1+α|3π4) is

a) 6

b) 9

c) 8

d) 11

IIT 2015

Play Selected  Login to save this search...