All BASICSTANDARDADVANCED

Question(s) from Search: IIT

Search Results Difficulty Solution
976

If f(x) =  then on the interval [0, π]

a) tan  and  are both continuous

b) tan  and  are both discontinuous

c) tan  and  are both continuous

d) tan  is continuous but  is not

If f(x) =  then on the interval [0, π]

a) tan  and  are both continuous

b) tan  and  are both discontinuous

c) tan  and  are both continuous

d) tan  is continuous but  is not

IIT 1989
977

One or more than one correct option

A ray of light along x+3y=3

gets reflected upon reaching X- axis, the equation of the reflected ray is

a) y=x+3

b) 3y=x3

c) y=3x3

d) 3y=x1

One or more than one correct option

A ray of light along x+3y=3

gets reflected upon reaching X- axis, the equation of the reflected ray is

a) y=x+3

b) 3y=x3

c) y=3x3

d) 3y=x1

IIT 2013
978

If  and  where 0 < x ≤1, then in this interval

a) Both f (x) and g (x) are increasing functions

b) Both f (x) and g (x) are decreasing functions

c) f (x) is an increasing function

d) g (x) is an increasing function

If  and  where 0 < x ≤1, then in this interval

a) Both f (x) and g (x) are increasing functions

b) Both f (x) and g (x) are decreasing functions

c) f (x) is an increasing function

d) g (x) is an increasing function

IIT 1997
979

The number of common tangents to the circles x2 + y2 – 4x − 6y – 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0 is

a) 1

b) 2

c) 3

d) 4

The number of common tangents to the circles x2 + y2 – 4x − 6y – 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0 is

a) 1

b) 2

c) 3

d) 4

IIT 2015
980

Let p ≥ 3 be an integer and α, β be the roots of x2 – (p + 1) x + 1 = 0. Using mathematical induction show that αn + βn
i) is an integer
ii) and is not divisible by p.

Let p ≥ 3 be an integer and α, β be the roots of x2 – (p + 1) x + 1 = 0. Using mathematical induction show that αn + βn
i) is an integer
ii) and is not divisible by p.

IIT 1992
981

The function  is not differentiable at

a) – 1

b) 0

c) 1

d) 2

The function  is not differentiable at

a) – 1

b) 0

c) 1

d) 2

IIT 1999
982

One or more than one correct option

Let RS be a diameter of the circle x2 + y2 = 1 where S is the point (1, 0). Let P be a variable point (other than R and S) on the circle and the tangents to the circle at S and P meet at the point Q. The normal to the circle at P intersect a line drawn through Q parallel to RS at a point E. Then the locus of E passes through the point(s)

a) (13,13)

b) (14,12)

c) (13,13)

d) (14,12)

One or more than one correct option

Let RS be a diameter of the circle x2 + y2 = 1 where S is the point (1, 0). Let P be a variable point (other than R and S) on the circle and the tangents to the circle at S and P meet at the point Q. The normal to the circle at P intersect a line drawn through Q parallel to RS at a point E. Then the locus of E passes through the point(s)

a) (13,13)

b) (14,12)

c) (13,13)

d) (14,12)

IIT 2016
983

If x is not an integral multiple of 2π use mathematical induction to prove that
 

If x is not an integral multiple of 2π use mathematical induction to prove that
 

IIT 1994
984

A circle passing through (1, −2) and touching the axis of X at (3, 0) also passes through the point

a) (−5, 2)

b) (2, −5)

c) (5, −2)

d) (−2, 5)

A circle passing through (1, −2) and touching the axis of X at (3, 0) also passes through the point

a) (−5, 2)

b) (2, −5)

c) (5, −2)

d) (−2, 5)

IIT 2013
985

The circles  and  intersect each other in distinct points if

a) r < 2

b) r > 8

c) 2 < r < 8

d) 2 ≤ r ≤ 8

The circles  and  intersect each other in distinct points if

a) r < 2

b) r > 8

c) 2 < r < 8

d) 2 ≤ r ≤ 8

IIT 1994
986

Prove by induction that
Pn = Aαn + Bβn for all n ≥ 1
Where α and β are roots of the quadratic equation
x2 – (1 – P) x – P (1 – P) = 0,
P1 = 1, P2 = 1 – P2, .  .  .,
Pn = (1 – P) Pn – 1 + P (1 – P) Pn – 2  n ≥ 3,
and ,

Prove by induction that
Pn = Aαn + Bβn for all n ≥ 1
Where α and β are roots of the quadratic equation
x2 – (1 – P) x – P (1 – P) = 0,
P1 = 1, P2 = 1 – P2, .  .  .,
Pn = (1 – P) Pn – 1 + P (1 – P) Pn – 2  n ≥ 3,
and ,

IIT 2000
987

Let P be a point on the parabola y2 = 8x which is at a minimum distance from the centre C of the circle x2 + (y + 6)2 = 1. Then the equation of the circle passing through C and having its centre at P is

a) x2 + y2 – 4x + 8y + 12 = 0

b) x2 + y2 –x + 4y − 12 = 0

c) x2 + y2 –x + 2y − 24 = 0

d) x2 + y2 – 4x + 9y + 18 = 0

Let P be a point on the parabola y2 = 8x which is at a minimum distance from the centre C of the circle x2 + (y + 6)2 = 1. Then the equation of the circle passing through C and having its centre at P is

a) x2 + y2 – 4x + 8y + 12 = 0

b) x2 + y2 –x + 4y − 12 = 0

c) x2 + y2 –x + 2y − 24 = 0

d) x2 + y2 – 4x + 9y + 18 = 0

IIT 2016
988

Let  then points where f (x) is not differentiable is (are)

a) 0

b) 1

c) ± 1

d) 0, ± 1

Let  then points where f (x) is not differentiable is (are)

a) 0

b) 1

c) ± 1

d) 0, ± 1

IIT 2005
989

The slope of the line touching both parabolas y2 = 4x and x2 = −32y is

a) 12

b) 32

c) 18

d) 23

The slope of the line touching both parabolas y2 = 4x and x2 = −32y is

a) 12

b) 32

c) 18

d) 23

IIT 2014
990

Let PQ and RS be tangents at the extremities of the diameter PR of a circle of radius r. If PS and QR intersect at a point x on the circumference of the circle, then 2r equals

a)

b)

c)

d)

Let PQ and RS be tangents at the extremities of the diameter PR of a circle of radius r. If PS and QR intersect at a point x on the circumference of the circle, then 2r equals

a)

b)

c)

d)

IIT 2001
991

Multiple choices

Let [x] denote the greatest integer less than or equal to x. If

f (x) = [xsinπx] then f(x) is

a) Continuous at x = 0

b) Continuous in  

c) f (x) is differentiable at x = 1

d) differentiable in

e) None of these

Multiple choices

Let [x] denote the greatest integer less than or equal to x. If

f (x) = [xsinπx] then f(x) is

a) Continuous at x = 0

b) Continuous in  

c) f (x) is differentiable at x = 1

d) differentiable in

e) None of these

IIT 1986
992

Let  then

a)

b)

c)

d)

Let  then

a)

b)

c)

d)

IIT 1987
993

Let a, r, s, t be non-zero real numbers. Let P(at2, 2at), Q, R(ar2, 2ar and S(as2, 2as) be distinct points on the parabola y2 = 4ax. Suppose PQ is the focal chord and QR and PK are parallel, where K is point (2a, 0)

The value of r is

a) 1t

b) t2+1t

c) 1t

d) t21t

Let a, r, s, t be non-zero real numbers. Let P(at2, 2at), Q, R(ar2, 2ar and S(as2, 2as) be distinct points on the parabola y2 = 4ax. Suppose PQ is the focal chord and QR and PK are parallel, where K is point (2a, 0)

The value of r is

a) 1t

b) t2+1t

c) 1t

d) t21t

IIT 2014
994

Find all solutions of

a)

b)

c)

d)

Find all solutions of

a)

b)

c)

d)

IIT 1983
995

Multiple choices

Which of the following functions are continuous on (0, π)

a) tanx

b)

c)

d)

Multiple choices

Which of the following functions are continuous on (0, π)

a) tanx

b)

c)

d)

IIT 1991
996

One or more than one correct option

If the normals of the parabola y2 = 4x drawn at the end points of the latus rectum are tangents to the circle (x − 3)2 + (y + 2)2 = r2 then the value of r2 is

a) 4

b) 1

c) 2

d) 0

One or more than one correct option

If the normals of the parabola y2 = 4x drawn at the end points of the latus rectum are tangents to the circle (x − 3)2 + (y + 2)2 = r2 then the value of r2 is

a) 4

b) 1

c) 2

d) 0

IIT 2015
997

Multiple choices

Let  for every real number x then

a) h (x) is continuous for all x

b) h is differentiable for all x

c)  for all x > 1

d) h is not differentiable for two values of x

Multiple choices

Let  for every real number x then

a) h (x) is continuous for all x

b) h is differentiable for all x

c)  for all x > 1

d) h is not differentiable for two values of x

IIT 1998
998

Number of divisors of the form 4n + 2(n ≥ 0) of integer 240 is

a) 4

b) 8

c) 10

d) 3

Number of divisors of the form 4n + 2(n ≥ 0) of integer 240 is

a) 4

b) 8

c) 10

d) 3

IIT 1998
999

The smallest positive root of the equation tan x – x = 0 lies in

a)

b)

c)

d)

e) None of these

The smallest positive root of the equation tan x – x = 0 lies in

a)

b)

c)

d)

e) None of these

IIT 1987
1000

Let f and g be increasing and decreasing functions, respectively from [0, ∞) to [0, ∞). Let h(x) =f(g(x)). If h(0) = 0 then h(x) – h(t) is

a) Always zero

b) Always negative

c) Always positive

d) Strictly increasing

e) None of these

Let f and g be increasing and decreasing functions, respectively from [0, ∞) to [0, ∞). Let h(x) =f(g(x)). If h(0) = 0 then h(x) – h(t) is

a) Always zero

b) Always negative

c) Always positive

d) Strictly increasing

e) None of these

IIT 1988

Play Selected  Login to save this search...