All BASICSTANDARDADVANCED

Question(s) from Search: IIT

Search Results Difficulty Solution
976

Let f and g be real valued functions on (−1, 1) such that g’(x) is continuous, g(0) ≠ 0, g’(0) = 0, g’’(0) ≠ 0 and f(x) = g(x)sinx
Statement 1 -
Statement 2 – f’(0) = g(0)

a) Statement 1 is true. Statement 2 is true. Statement 2 is a correct explanation of statement 1

b) Statement 1 is true. Statement 2 is true. Statement 2 is not a correct explanation of statement 1

c) Statement 1 is true. Statement 2 is false.

d) Statement 1 is false. Statement 2 is true.

Let f and g be real valued functions on (−1, 1) such that g’(x) is continuous, g(0) ≠ 0, g’(0) = 0, g’’(0) ≠ 0 and f(x) = g(x)sinx
Statement 1 -
Statement 2 – f’(0) = g(0)

a) Statement 1 is true. Statement 2 is true. Statement 2 is a correct explanation of statement 1

b) Statement 1 is true. Statement 2 is true. Statement 2 is not a correct explanation of statement 1

c) Statement 1 is true. Statement 2 is false.

d) Statement 1 is false. Statement 2 is true.

IIT 2008
977

The area of the region {(x,y)R2:y>|x+3|,5yx+915}

is equal to

a) 16

b) 43

c) 32

d) 53

The area of the region {(x,y)R2:y>|x+3|,5yx+915}

is equal to

a) 16

b) 43

c) 32

d) 53

IIT 2016
978

The area (in square units) bounded by the curves y=x,2yx+3=0

, X – axis and lying in the first quadrant is

a) 9

b) 6

c) 18

d) 274

The area (in square units) bounded by the curves y=x,2yx+3=0

, X – axis and lying in the first quadrant is

a) 9

b) 6

c) 18

d) 274

IIT 2013
979

One or more than one correct option

Let S be the area of the region enclosed by y=ex2

, y = 0, x = 0 and x = 1, then

a) S1e

b) S11e

c) S14(1+1e)

d) S12+1e(112)

One or more than one correct option

Let S be the area of the region enclosed by y=ex2

, y = 0, x = 0 and x = 1, then

a) S1e

b) S11e

c) S14(1+1e)

d) S12+1e(112)

IIT 2012
980

Show that the sum of the first n terms of the series
12 + 2.22 + 32 + 2.42 + 52 + 2.62 + .  .  .
is  when n is even, and  when n is odd.

Show that the sum of the first n terms of the series
12 + 2.22 + 32 + 2.42 + 52 + 2.62 + .  .  .
is  when n is even, and  when n is odd.

IIT 1988
981

Differentiate from first principles (or ab initio)

a) 2xcos(x2 + 1)

b) xcos(x2 + 1)

c) 2cosx(x2 + 1)

d) 2xcosx(x2 + 1) + sin(x2 + 1)

Differentiate from first principles (or ab initio)

a) 2xcos(x2 + 1)

b) xcos(x2 + 1)

c) 2cosx(x2 + 1)

d) 2xcosx(x2 + 1) + sin(x2 + 1)

IIT 1978
982

One or more than one correct option

Let y(x) be a solution of the differential equation (1+ex)y+yex=1

. If y(0) = 2, then which of the following statements is/are true?

a) y(−4) = 0

b) y(−2) = 0

c) y(x) has a critical point in the interval (−1, 0)

d) y(x) has no critical point in the interval

One or more than one correct option

Let y(x) be a solution of the differential equation (1+ex)y+yex=1

. If y(0) = 2, then which of the following statements is/are true?

a) y(−4) = 0

b) y(−2) = 0

c) y(x) has a critical point in the interval (−1, 0)

d) y(x) has no critical point in the interval

IIT 2015
983

An urn contains two white and two black balls. A ball is drawn at random. If it is white it is not replaced in the urn. Otherwise it is placed along with the other balls of the same colour. The process is repeated. Find the probability that the third ball drawn is black?

An urn contains two white and two black balls. A ball is drawn at random. If it is white it is not replaced in the urn. Otherwise it is placed along with the other balls of the same colour. The process is repeated. Find the probability that the third ball drawn is black?

IIT 1987
984

Find the derivative with respect to x of the function

 at x =

a)

b)

c)

d)

Find the derivative with respect to x of the function

 at x =

a)

b)

c)

d)

IIT 1984
985

The function y = f(x) is the solution of the differential equation dydx+xyx21=x4+2x1x2

in (−1, 1) satisfying f(0) = 0, then 3232f(x)dx is

a) π332

b) π334

c) π634

d) π632

The function y = f(x) is the solution of the differential equation dydx+xyx21=x4+2x1x2

in (−1, 1) satisfying f(0) = 0, then 3232f(x)dx is

a) π332

b) π334

c) π634

d) π632

IIT 2014
986

Solve  

Solve  

IIT 1996
987

Let y′(x) + y(x) g′(x) = g(x) g′(x), y(0) = 0, x ∈ ℝ where f′(x) denotes ddxf(x)

and g(x) is a given non constant differentiable function on ℝ with g(0) = g(2) = 0. Then the value of y(2) is

a) 1

b) 0

c) 2

d) 4

Let y′(x) + y(x) g′(x) = g(x) g′(x), y(0) = 0, x ∈ ℝ where f′(x) denotes ddxf(x)

and g(x) is a given non constant differentiable function on ℝ with g(0) = g(2) = 0. Then the value of y(2) is

a) 1

b) 0

c) 2

d) 4

IIT 2011
988

One or more than one correct option

A solution curve of the differential equation (x2+xy+4x+2y+4)dydxy2=0,x>0

passes through the point (1, 3), then the solution curve

a) Intersects y = x + 2 exactly at one point

b) Intersects y = x + 2 exactly at two points

c) Intersects y = (x + 2)2

d) Does not intersect y = (x + 3)2

One or more than one correct option

A solution curve of the differential equation (x2+xy+4x+2y+4)dydxy2=0,x>0

passes through the point (1, 3), then the solution curve

a) Intersects y = x + 2 exactly at one point

b) Intersects y = x + 2 exactly at two points

c) Intersects y = (x + 2)2

d) Does not intersect y = (x + 3)2

IIT 2016
989

The value of

a) –1

b) 0

c) 1

d) i

e) None of these

The value of

a) –1

b) 0

c) 1

d) i

e) None of these

IIT 1987
990

Let U1 = 1, U2 = 1, Un + 2 = Un + 1 + Un, n > 1. Use mathematical induction to show that
 
for all integers n > 1

Let U1 = 1, U2 = 1, Un + 2 = Un + 1 + Un, n > 1. Use mathematical induction to show that
 
for all integers n > 1

IIT 1981
991

Let f(x) = (1 – x)2 sin2x + x2Consider the statementsStatement 1: There exists some x ∈ ℝ such that f(x) + 2x = 2(1 + x2)Statement 2: There exists some x ∈ ℝ such that 2f(x) + 1 = 2x(x + 1)

a) Both 1 and 2 are true

b) 1 is true and 2 is false

c) 1 is false and 2 is true

d) Both 1 and 2 are false

Let f(x) = (1 – x)2 sin2x + x2Consider the statementsStatement 1: There exists some x ∈ ℝ such that f(x) + 2x = 2(1 + x2)Statement 2: There exists some x ∈ ℝ such that 2f(x) + 1 = 2x(x + 1)

a) Both 1 and 2 are true

b) 1 is true and 2 is false

c) 1 is false and 2 is true

d) Both 1 and 2 are false

IIT 2013
992

Let z and ω be two complex numbers such that |z| ≤ 1, |ω| ≤ 1 and   then z equals

a) 1 or i

b) i or –i

c) 1 or –1

d) i or –1

Let z and ω be two complex numbers such that |z| ≤ 1, |ω| ≤ 1 and   then z equals

a) 1 or i

b) i or –i

c) 1 or –1

d) i or –1

IIT 1995
993

Given
 
 
Prove that
 

Given
 
 
Prove that
 

IIT 1984
994

The coordinates of the in centre of the triangle that has the co ordinates of the mid points of its sides as (0, 1), (1, 1) and (1, 0) is

a) 2+2

b) 22

c) 1+2

d) 12

The coordinates of the in centre of the triangle that has the co ordinates of the mid points of its sides as (0, 1), (1, 1) and (1, 0) is

a) 2+2

b) 22

c) 1+2

d) 12

IIT 2013
995

Using mathematical induction, prove that

 for n > 1

Using mathematical induction, prove that

 for n > 1

IIT 1986
996

If f(x) =  then on the interval [0, π]

a) tan  and  are both continuous

b) tan  and  are both discontinuous

c) tan  and  are both continuous

d) tan  is continuous but  is not

If f(x) =  then on the interval [0, π]

a) tan  and  are both continuous

b) tan  and  are both discontinuous

c) tan  and  are both continuous

d) tan  is continuous but  is not

IIT 1989
997

One or more than one correct option

A ray of light along x+3y=3

gets reflected upon reaching X- axis, the equation of the reflected ray is

a) y=x+3

b) 3y=x3

c) y=3x3

d) 3y=x1

One or more than one correct option

A ray of light along x+3y=3

gets reflected upon reaching X- axis, the equation of the reflected ray is

a) y=x+3

b) 3y=x3

c) y=3x3

d) 3y=x1

IIT 2013
998

If  and  where 0 < x ≤1, then in this interval

a) Both f (x) and g (x) are increasing functions

b) Both f (x) and g (x) are decreasing functions

c) f (x) is an increasing function

d) g (x) is an increasing function

If  and  where 0 < x ≤1, then in this interval

a) Both f (x) and g (x) are increasing functions

b) Both f (x) and g (x) are decreasing functions

c) f (x) is an increasing function

d) g (x) is an increasing function

IIT 1997
999

The number of common tangents to the circles x2 + y2 – 4x − 6y – 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0 is

a) 1

b) 2

c) 3

d) 4

The number of common tangents to the circles x2 + y2 – 4x − 6y – 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0 is

a) 1

b) 2

c) 3

d) 4

IIT 2015
1000

Show, by vector method, that the angular bisectors of a triangle are concurrent and find an expression for the position vector of point of concurrency in terms of position vectors of the vertices.

Show, by vector method, that the angular bisectors of a triangle are concurrent and find an expression for the position vector of point of concurrency in terms of position vectors of the vertices.

IIT 2001

Play Selected  Login to save this search...