All BASICSTANDARDADVANCED

Question(s) from Search: IIT

Search Results Difficulty Solution
951

Evaluate

Evaluate

IIT 2005
952

Let S be the focus of the parabola y2 = 8x and PQ be the common chord of the circle x2 + y2 – 2x – 4y = 0 and the given parabola. The area of △QPS is

a) 2 sq. units

b) 4 sq. units

c) 6 sq. units

d) 8 sq. units

Let S be the focus of the parabola y2 = 8x and PQ be the common chord of the circle x2 + y2 – 2x – 4y = 0 and the given parabola. The area of △QPS is

a) 2 sq. units

b) 4 sq. units

c) 6 sq. units

d) 8 sq. units

IIT 2012
953

Multiple choices

The function f (x) = 1 + |sinx| is

a) continuous nowhere

b) continuous everywhere

c) differentiable nowhere

d) not differentiable at x = 0

e) not differentiable at infinite number of points

Multiple choices

The function f (x) = 1 + |sinx| is

a) continuous nowhere

b) continuous everywhere

c) differentiable nowhere

d) not differentiable at x = 0

e) not differentiable at infinite number of points

IIT 1986
954

Let a, r, s, t be non-zero real numbers. Let P(at2, 2at), Q, R(ar2, 2ar and S(as2, 2as) be distinct points on the parabola y2 = 4ax. Suppose PQ is the focal chord and QR and PK are parallel, where K is point (2a, 0)If st = 1 then the tangent at P and normal at S to the parabola meet at a point whose ordinate is

a) (t2+1)22t3

b) a(t2+1)22t3

c) a(t2+1)2r3

d) a(t2+2)2r3

Let a, r, s, t be non-zero real numbers. Let P(at2, 2at), Q, R(ar2, 2ar and S(as2, 2as) be distinct points on the parabola y2 = 4ax. Suppose PQ is the focal chord and QR and PK are parallel, where K is point (2a, 0)If st = 1 then the tangent at P and normal at S to the parabola meet at a point whose ordinate is

a) (t2+1)22t3

b) a(t2+1)22t3

c) a(t2+1)2r3

d) a(t2+2)2r3

IIT 2014
955

The tangent PT and the normal PN of the parabola y2 = 4ax at the point P on it meet its axis at the points T and N respectively. The locus of the centroid of the triangle PTM is a parabola whose

a) Vertex is (2a3,0)

b) Directrix is x = 0

c) Latus rectum is 2a3

d) Focus is (a, 0)

The tangent PT and the normal PN of the parabola y2 = 4ax at the point P on it meet its axis at the points T and N respectively. The locus of the centroid of the triangle PTM is a parabola whose

a) Vertex is (2a3,0)

b) Directrix is x = 0

c) Latus rectum is 2a3

d) Focus is (a, 0)

IIT 2009
956

Let f and g be increasing and decreasing functions, respectively from [0, ∞) to [0, ∞). Let h(x) =f(g(x)). If h(0) = 0 then h(x) – h(t) is

a) Always zero

b) Always negative

c) Always positive

d) Strictly increasing

e) None of these

Let f and g be increasing and decreasing functions, respectively from [0, ∞) to [0, ∞). Let h(x) =f(g(x)). If h(0) = 0 then h(x) – h(t) is

a) Always zero

b) Always negative

c) Always positive

d) Strictly increasing

e) None of these

IIT 1988
957

Let E = {1, 2, 3, 4} and F = {1, 2} then the number of onto functions from E to F is

a) 14

b) 16

c) 12

d) 8

Let E = {1, 2, 3, 4} and F = {1, 2} then the number of onto functions from E to F is

a) 14

b) 16

c) 12

d) 8

IIT 2001
958

On the interval [0, 1] the function  takes the maximum value at the point

a) 0

b)

c)

d)

On the interval [0, 1] the function  takes the maximum value at the point

a) 0

b)

c)

d)

IIT 1995
959

Let f (x) be continuous and g (x) be a discontinuous function. Prove that f (x) + g (x) is a discontinuous function.

a) True

b) False

c) Could be continuous or discontinuous

Let f (x) be continuous and g (x) be a discontinuous function. Prove that f (x) + g (x) is a discontinuous function.

a) True

b) False

c) Could be continuous or discontinuous

IIT 1987
960

Find the coordinates of the point at which the circles x2 + y2 – 4x – 2y = – 4 and  x2 + y2 – 12x – 8y = – 36  touch each other. Also find the equation of the common tangents touching the circles at distinct points.

Find the coordinates of the point at which the circles x2 + y2 – 4x – 2y = – 4 and  x2 + y2 – 12x – 8y = – 36  touch each other. Also find the equation of the common tangents touching the circles at distinct points.

IIT 1993
961

Draw the graph of the function y = [x] + |1 – x|, – 1 ≤ x ≤ 3. Determine the points, if any, where the function is not differentiable.

a) y is differentiable everywhere

b) y is not differentiable at x = 0

c) y is not differentiable at x = 0, 1, 2

d) y is not differentiable at x = 0, 1, 2 and 3

Draw the graph of the function y = [x] + |1 – x|, – 1 ≤ x ≤ 3. Determine the points, if any, where the function is not differentiable.

a) y is differentiable everywhere

b) y is not differentiable at x = 0

c) y is not differentiable at x = 0, 1, 2

d) y is not differentiable at x = 0, 1, 2 and 3

IIT 1989
962

In how many ways can a pack of 52 cards be divided in 4 sets, three of them having 17 cards each and fourth just one card.

In how many ways can a pack of 52 cards be divided in 4 sets, three of them having 17 cards each and fourth just one card.

IIT 1979
963

The area bounded by the curves

  and   is

a) 1

b) 2

c)

d) 4

The area bounded by the curves

  and   is

a) 1

b) 2

c)

d) 4

IIT 2002
964

Let ABC be an equilateral triangle inscribed in the circle x2 + y2 = a2. Suppose perpendiculars from A, B, C to the major axis of the ellipse  (a > b) meet the ellipse respectively at P, Q, R so that P, Q, R are on the same side of the major axis. Prove that the normals drawn at the points P, Q and R are concurrent.

Let ABC be an equilateral triangle inscribed in the circle x2 + y2 = a2. Suppose perpendiculars from A, B, C to the major axis of the ellipse  (a > b) meet the ellipse respectively at P, Q, R so that P, Q, R are on the same side of the major axis. Prove that the normals drawn at the points P, Q and R are concurrent.

IIT 2000
965

Which of the following pieces of data does not uniquely determine an acute angled triangle ABC (R being the radius of the circumcircle).

a) a, sinA, sinB

b) a, b , c

c) a, sinB, R

d) a, sinA, R

Which of the following pieces of data does not uniquely determine an acute angled triangle ABC (R being the radius of the circumcircle).

a) a, sinA, sinB

b) a, b , c

c) a, sinB, R

d) a, sinA, R

IIT 2002
966

Let f(x), x ≥ 0 be a non-negative function and let F(x) = . For some c > 0, f(x) ≤ cF(x) for all x ≥ 0. Then for all x ≥ 0, f(x) =

a) 0

b) 1

c) 2

d) 4

Let f(x), x ≥ 0 be a non-negative function and let F(x) = . For some c > 0, f(x) ≤ cF(x) for all x ≥ 0. Then for all x ≥ 0, f(x) =

a) 0

b) 1

c) 2

d) 4

IIT 2001
967

Tangents are drawn from P (6, 8) to the circle  . Find the radius of the circle such that the area of the triangle formed by tangents and chord of contact is maximum.

Tangents are drawn from P (6, 8) to the circle  . Find the radius of the circle such that the area of the triangle formed by tangents and chord of contact is maximum.

IIT 2003
968

Find the natural number a for which
  
where the function f satisfies the relation f (x + y) = f (x) . f (y)
for all natural numbers x and y and further f (1) = 2

a) 1

b) 2

c) 3

d) 4

Find the natural number a for which
  
where the function f satisfies the relation f (x + y) = f (x) . f (y)
for all natural numbers x and y and further f (1) = 2

a) 1

b) 2

c) 3

d) 4

IIT 1992
969

In a certain test  students gave wrong answers to at least i questions where i = 1, 2, …, k. No student gave more than k correct answers. Total number of wrong answers given is .  .  .

In a certain test  students gave wrong answers to at least i questions where i = 1, 2, …, k. No student gave more than k correct answers. Total number of wrong answers given is .  .  .

IIT 1982
970

Multiple choice

If

a) f(x) is increasing on [– 1, 2]

b) f(x) is continuous on [– 1, 3]

c)  does not exist

d) f(x) has maximum value at x = 2

Multiple choice

If

a) f(x) is increasing on [– 1, 2]

b) f(x) is continuous on [– 1, 3]

c)  does not exist

d) f(x) has maximum value at x = 2

IIT 1993
971

If arg(z) < 0 then arg(−z) – arg(z) is equal to

a) π

b) –π

c) – π/2

d) π/2

If arg(z) < 0 then arg(−z) – arg(z) is equal to

a) π

b) –π

c) – π/2

d) π/2

IIT 2000
972

Multiple choice

f(x) is a cubic polynomial with f(2) = 18 and f(1) = − 1. Also f(x) has a local maxima at x = − 1 and  has a local minima at x = 0 then

a) The distance between (− 1, 2) and (a, f(a)), where x = a is the point of local minimum, is

b) f(x) is increasing for

c) f(x) has a local minima at x = 1

d) The value of f(0) = 15

Multiple choice

f(x) is a cubic polynomial with f(2) = 18 and f(1) = − 1. Also f(x) has a local maxima at x = − 1 and  has a local minima at x = 0 then

a) The distance between (− 1, 2) and (a, f(a)), where x = a is the point of local minimum, is

b) f(x) is increasing for

c) f(x) has a local minima at x = 1

d) The value of f(0) = 15

IIT 2006
973

From the point A (0, 3) on the circle , a chord AB is drawn and extended to a point M such that AˆM = 2AˆB. The equation of locus of M is . . . . .

From the point A (0, 3) on the circle , a chord AB is drawn and extended to a point M such that AˆM = 2AˆB. The equation of locus of M is . . . . .

IIT 1986
974

In Δ ABC the median to the side BC is of length  and divides ∠A into 30° and 45°. Then find the length of side BC.

a) 1

b) 2

c)

d)

In Δ ABC the median to the side BC is of length  and divides ∠A into 30° and 45°. Then find the length of side BC.

a) 1

b) 2

c)

d)

IIT 1985
975

If f is an even function defined on (−5, 5) then the real values of x satisfying the equation f (x) =  are ……………

a)

b)

c)

d)

If f is an even function defined on (−5, 5) then the real values of x satisfying the equation f (x) =  are ……………

a)

b)

c)

d)

IIT 1996

Play Selected  Login to save this search...