|
926 |
The angle between the pair of tangents from a point P to the parabola y2 = 4ax is 45°. Show that the locus of the point P is a hyperbola.
The angle between the pair of tangents from a point P to the parabola y2 = 4ax is 45°. Show that the locus of the point P is a hyperbola.
|
IIT 1998 |
|
|
927 |
The integral is equal to a) b) c) d)
The integral is equal to a) b) c) d)
|
IIT 2014 |
|
|
928 |
A box contains 24 identical balls of which 12 are white and 12 are black. The balls are drawn at random from the box one at a time with replacement. The probability that a white ball is drawn for the fourth time on the seventh draw is a)  b)  c)  d) 
A box contains 24 identical balls of which 12 are white and 12 are black. The balls are drawn at random from the box one at a time with replacement. The probability that a white ball is drawn for the fourth time on the seventh draw is a)  b)  c)  d) 
|
IIT 1984 |
|
|
929 |
Let F : ℝ → ℝ be a thrice differentiable function. Suppose that F(1) = 0, F(3) = −4 and F′(x) < 0 for all x ε (1, 3). Let f(x) = x F(x) for all x ε ℝ.The correct statement(s) is/are a) f′(1) < 0 b) f(2) < 0 c) f′(x) ≠ 0 for every x ε (1, 3) d) f′(x) = 0 for some x ε (1, 3)
Let F : ℝ → ℝ be a thrice differentiable function. Suppose that F(1) = 0, F(3) = −4 and F′(x) < 0 for all x ε (1, 3). Let f(x) = x F(x) for all x ε ℝ.The correct statement(s) is/are a) f′(1) < 0 b) f(2) < 0 c) f′(x) ≠ 0 for every x ε (1, 3) d) f′(x) = 0 for some x ε (1, 3)
|
IIT 2015 |
|
|
930 |
Let A, B , C be three mutually independent events. Consider the two statements S1 and S2 S1 : A and B ∪ C are independent S2 : A and B ∩ C are independent. Then a) Both S1 and S2 are true b) Only S1 is true c) Only S2 is true d) Neither S1 nor S2 is true
Let A, B , C be three mutually independent events. Consider the two statements S1 and S2 S1 : A and B ∪ C are independent S2 : A and B ∩ C are independent. Then a) Both S1 and S2 are true b) Only S1 is true c) Only S2 is true d) Neither S1 nor S2 is true
|
IIT 1994 |
|
|
931 |
A circle C of radius 1 is inscribed in an equilateral triangle PQR. The point of contacts of C with its sides PQ, QR and RP are D, E, F respectively. The line PQ is given by and the point D is . Further, it is given that the origin and the centre of C are on the same side of the line PQ. Equations of lines QR and RP are a)  b)  c)  d) 
A circle C of radius 1 is inscribed in an equilateral triangle PQR. The point of contacts of C with its sides PQ, QR and RP are D, E, F respectively. The line PQ is given by and the point D is . Further, it is given that the origin and the centre of C are on the same side of the line PQ. Equations of lines QR and RP are a)  b)  c)  d) 
|
IIT 2008 |
|
|
932 |
Let f(x) = 7tan8x + 7tan6x – 3tan4x – 3tan2x for all Then the correct expression(s) is (are) a) b) c) d)
Let f(x) = 7tan8x + 7tan6x – 3tan4x – 3tan2x for all Then the correct expression(s) is (are) a) b) c) d)
|
IIT 2015 |
|
|
933 |
Consider the lines L1: x + 3y – 5 = 0, L2: 3x – ky – 1 = 0, L3: 5x + 2y – 12 = 0. Match the statement/expressions in column 1 with the statement/expression in column 2. | Column 1 | Column 2 | | A) L1, L2, L3 are concurrent if | p) k = − 9 | | B) One of L1, L2, L3 is parallel to at least one of the other two | q)  | | C) L1, L2, L3 form a triangle if | r)  | | D) L1, L2, L3 do not form a triangle if | s) k = 5 |
Consider the lines L1: x + 3y – 5 = 0, L2: 3x – ky – 1 = 0, L3: 5x + 2y – 12 = 0. Match the statement/expressions in column 1 with the statement/expression in column 2. | Column 1 | Column 2 | | A) L1, L2, L3 are concurrent if | p) k = − 9 | | B) One of L1, L2, L3 is parallel to at least one of the other two | q)  | | C) L1, L2, L3 form a triangle if | r)  | | D) L1, L2, L3 do not form a triangle if | s) k = 5 |
|
IIT 2008 |
|
|
934 |
The number of quadratic polynomials f(x) with non-negative integer coefficients ≤ 3 satisfying f(0) = 0 and is a) 8 b) 2 c) 4 d) 0
The number of quadratic polynomials f(x) with non-negative integer coefficients ≤ 3 satisfying f(0) = 0 and is a) 8 b) 2 c) 4 d) 0
|
IIT 2014 |
|
|
935 |
A function f : ℝ → ℝ, where ℝ is the set of real numbers, is defined by . Find the interval of values of α for which f is onto. Is the function one to one for α= 3? Justify your answer.
A function f : ℝ → ℝ, where ℝ is the set of real numbers, is defined by . Find the interval of values of α for which f is onto. Is the function one to one for α= 3? Justify your answer.
|
IIT 1996 |
|
|
936 |
Let f : ℝ → ℝ be a function defined by where [x] denotes the greatest integer less than or equal to x. If then the value of (4I – 1) is a) 1 b) 3 c) 2 d) 0
Let f : ℝ → ℝ be a function defined by where [x] denotes the greatest integer less than or equal to x. If then the value of (4I – 1) is a) 1 b) 3 c) 2 d) 0
|
IIT 2015 |
|
|
937 |
Let f: [0, 2] → ℝ be a function which is continuous on [0, 2] and differentiable on (0, 2) with f(0) = 1. Let . If F′(x) = f′(x) Ɐ x ∈ [0, 2] then F(2) equals a) e2 – 1 b) e4 – 1 c) e – 1 d) e2
Let f: [0, 2] → ℝ be a function which is continuous on [0, 2] and differentiable on (0, 2) with f(0) = 1. Let . If F′(x) = f′(x) Ɐ x ∈ [0, 2] then F(2) equals a) e2 – 1 b) e4 – 1 c) e – 1 d) e2
|
IIT 2014 |
|
|
938 |
(Multiple correct answers) Let M and N are two events, the probability that exactly one of them occurs is a) P (M) + P (N) − 2P (M ∩ N) b) P (M) + P (N) − P ( ) c)  d) 
(Multiple correct answers) Let M and N are two events, the probability that exactly one of them occurs is a) P (M) + P (N) − 2P (M ∩ N) b) P (M) + P (N) − P ( ) c)  d) 
|
IIT 1984 |
|
|
939 |
The area (in square units) of the region y2 > 2x and x2 + y2 ≤ 4x, x ≥ 0, y > 0 is a) b) c) d)
The area (in square units) of the region y2 > 2x and x2 + y2 ≤ 4x, x ≥ 0, y > 0 is a) b) c) d)
|
IIT 2016 |
|
|
940 |
Let f and g be real valued functions on (−1, 1) such that g’(x) is continuous, g(0) ≠ 0, g’(0) = 0, g’’(0) ≠ 0 and f(x) = g(x)sinx Statement 1 -  Statement 2 – f’(0) = g(0) a) Statement 1 is true. Statement 2 is true. Statement 2 is a correct explanation of statement 1 b) Statement 1 is true. Statement 2 is true. Statement 2 is not a correct explanation of statement 1 c) Statement 1 is true. Statement 2 is false. d) Statement 1 is false. Statement 2 is true.
Let f and g be real valued functions on (−1, 1) such that g’(x) is continuous, g(0) ≠ 0, g’(0) = 0, g’’(0) ≠ 0 and f(x) = g(x)sinx Statement 1 -  Statement 2 – f’(0) = g(0) a) Statement 1 is true. Statement 2 is true. Statement 2 is a correct explanation of statement 1 b) Statement 1 is true. Statement 2 is true. Statement 2 is not a correct explanation of statement 1 c) Statement 1 is true. Statement 2 is false. d) Statement 1 is false. Statement 2 is true.
|
IIT 2008 |
|
|
941 |
The area of the region is equal to a) b) c) d)
The area of the region is equal to a) b) c) d)
|
IIT 2016 |
|
|
942 |
The area (in square units) bounded by the curves , X – axis and lying in the first quadrant is a) 9 b) 6 c) 18 d)
The area (in square units) bounded by the curves , X – axis and lying in the first quadrant is a) 9 b) 6 c) 18 d)
|
IIT 2013 |
|
|
943 |
One or more than one correct option Let S be the area of the region enclosed by , y = 0, x = 0 and x = 1, then a) b) c) d)
One or more than one correct option Let S be the area of the region enclosed by , y = 0, x = 0 and x = 1, then a) b) c) d)
|
IIT 2012 |
|
|
944 |
Show that the sum of the first n terms of the series 12 + 2.22 + 32 + 2.42 + 52 + 2.62 + . . . is when n is even, and when n is odd.
Show that the sum of the first n terms of the series 12 + 2.22 + 32 + 2.42 + 52 + 2.62 + . . . is when n is even, and when n is odd.
|
IIT 1988 |
|
|
945 |
Differentiate from first principles (or ab initio)  a) 2xcos(x2 + 1) b) xcos(x2 + 1) c) 2cosx(x2 + 1) d) 2xcosx(x2 + 1) + sin(x2 + 1)
Differentiate from first principles (or ab initio)  a) 2xcos(x2 + 1) b) xcos(x2 + 1) c) 2cosx(x2 + 1) d) 2xcosx(x2 + 1) + sin(x2 + 1)
|
IIT 1978 |
|
|
946 |
One or more than one correct option Let y(x) be a solution of the differential equation . If y(0) = 2, then which of the following statements is/are true? a) y(−4) = 0 b) y(−2) = 0 c) y(x) has a critical point in the interval (−1, 0) d) y(x) has no critical point in the interval
One or more than one correct option Let y(x) be a solution of the differential equation . If y(0) = 2, then which of the following statements is/are true? a) y(−4) = 0 b) y(−2) = 0 c) y(x) has a critical point in the interval (−1, 0) d) y(x) has no critical point in the interval
|
IIT 2015 |
|
|
947 |
An urn contains two white and two black balls. A ball is drawn at random. If it is white it is not replaced in the urn. Otherwise it is placed along with the other balls of the same colour. The process is repeated. Find the probability that the third ball drawn is black?
An urn contains two white and two black balls. A ball is drawn at random. If it is white it is not replaced in the urn. Otherwise it is placed along with the other balls of the same colour. The process is repeated. Find the probability that the third ball drawn is black?
|
IIT 1987 |
|
|
948 |
Find the derivative with respect to x of the function at x = a)  b)  c)  d) 
Find the derivative with respect to x of the function at x = a)  b)  c)  d) 
|
IIT 1984 |
|
|
949 |
The function y = f(x) is the solution of the differential equation in (−1, 1) satisfying f(0) = 0, then is a) b) c) d)
The function y = f(x) is the solution of the differential equation in (−1, 1) satisfying f(0) = 0, then is a) b) c) d)
|
IIT 2014 |
|
|
950 |
Solve
Solve
|
IIT 1996 |
|