|
876 |
Domain of definition of the function for real values of x is a)  b)  c)  d) 
Domain of definition of the function for real values of x is a)  b)  c)  d) 
|
IIT 2003 |
|
|
877 |
Let λ and α be real. Find the set of all values of λ for which the system of linear equations has a non-trivial solution. For λ = 1 find the value of α.
|
IIT 1993 |
|
|
878 |
Let f be a one–one function with domain {x, y, z} and range {1, 2, 3}. It is given that exactly one of the following statements is true and remaining statements are false f (1) = 1, f (y) ≠ 1, f (z) ≠ 2. Determine
Let f be a one–one function with domain {x, y, z} and range {1, 2, 3}. It is given that exactly one of the following statements is true and remaining statements are false f (1) = 1, f (y) ≠ 1, f (z) ≠ 2. Determine
|
IIT 1982 |
|
|
879 |
The value of . Given that a, x, y, z, b are in Arithmetic Progression while the value of . If a, x, y, z, b are in Harmonic Progression then find a and b.
The value of . Given that a, x, y, z, b are in Arithmetic Progression while the value of . If a, x, y, z, b are in Harmonic Progression then find a and b.
|
IIT 1978 |
|
|
880 |
Let {x} and [x] denote the fractional and integral part of a real number x respectively. Solve 4{x} = x + [x]
Let {x} and [x] denote the fractional and integral part of a real number x respectively. Solve 4{x} = x + [x]
|
IIT 1994 |
|
|
881 |
If S1, S2, . . . .,Sn are the sums of infinite geometric series whose first terms are 1, 2, 3, . . ., n and whose common ratios are respectively, then find the value of 
If S1, S2, . . . .,Sn are the sums of infinite geometric series whose first terms are 1, 2, 3, . . ., n and whose common ratios are respectively, then find the value of 
|
IIT 1991 |
|
|
882 |
If are three non–coplanar vectors, then equals a) 0 b)  c)  d) 
If are three non–coplanar vectors, then equals a) 0 b)  c)  d) 
|
IIT 1995 |
|
|
883 |
Let a, b are real positive numbers. If a, A1, A2, b are in Arithmetic Progression, a, G1, G2, b are in Geometric Progression and a, H1, H2, b are in Harmonic Progression show that 
Let a, b are real positive numbers. If a, A1, A2, b are in Arithmetic Progression, a, G1, G2, b are in Geometric Progression and a, H1, H2, b are in Harmonic Progression show that 
|
IIT 2002 |
|
|
884 |
a) True b) False
a) True b) False
|
IIT 1978 |
|
|
885 |
Multiple choice Let be three vectors. A vector in the plane of b and c whose projection on a is of magnitude is a)  b)  c)  d) 
Multiple choice Let be three vectors. A vector in the plane of b and c whose projection on a is of magnitude is a)  b)  c)  d) 
|
IIT 1993 |
|
|
886 |
Let A be vector parallel to the line of intersection of planes P1 and P2. Plane P1 is parallel to the vectors and and that P2 is parallel to and , then the angle between vector A and a given vector is a)  b)  c)  d) 
|
IIT 2006 |
|
|
887 |
Find the range of values of t for which a) (− , − ) b) ( , ) c) (− , − ) U ( , ) d) (− , )
|
IIT 2005 |
|
|
888 |
A vector A has components A1, A2, A3 in a right handed rectangular cartesian coordinate system OXYZ. The coordinate system is rotated about the X–axis through an angle . Find the components of A in the new co-ordinate system in terms of A1, A2, A3.
A vector A has components A1, A2, A3 in a right handed rectangular cartesian coordinate system OXYZ. The coordinate system is rotated about the X–axis through an angle . Find the components of A in the new co-ordinate system in terms of A1, A2, A3.
|
IIT 1983 |
|
|
889 |
The value of is equal to a)  b)  c)  d) 
The value of is equal to a)  b)  c)  d) 
|
IIT 1991 |
|
|
890 |
In a triangle OAB, E is the midpoint of BO and D is a point on AB such that AD : DB = 2 : 1. If OD and AE intercept at P determine the ratio OP : PD using vector methods.
In a triangle OAB, E is the midpoint of BO and D is a point on AB such that AD : DB = 2 : 1. If OD and AE intercept at P determine the ratio OP : PD using vector methods.
|
IIT 1989 |
|
|
891 |
The position vectors of the vertices A, B, C of a tetrahedron are respectively. The altitude from the vertex D to the opposite face ABC meets the median line through A of the triangle ABC at E. If the length of the side AD is 4 and the volume of the tetrahedron is . Find the position vector of E or all possible positions.
The position vectors of the vertices A, B, C of a tetrahedron are respectively. The altitude from the vertex D to the opposite face ABC meets the median line through A of the triangle ABC at E. If the length of the side AD is 4 and the volume of the tetrahedron is . Find the position vector of E or all possible positions.
|
IIT 1996 |
|
|
892 |
If and where 0 < x ≤1, then in this interval a) Both f (x) and g (x) are increasing functions b) Both f (x) and g (x) are decreasing functions c) f (x) is an increasing function d) g (x) is an increasing function
If and where 0 < x ≤1, then in this interval a) Both f (x) and g (x) are increasing functions b) Both f (x) and g (x) are decreasing functions c) f (x) is an increasing function d) g (x) is an increasing function
|
IIT 1997 |
|
|
893 |
The number of common tangents to the circles x2 + y2 – 4x − 6y – 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0 is a) 1 b) 2 c) 3 d) 4
The number of common tangents to the circles x2 + y2 – 4x − 6y – 12 = 0 and x2 + y2 + 6x + 18y + 26 = 0 is a) 1 b) 2 c) 3 d) 4
|
IIT 2015 |
|
|
894 |
Let p ≥ 3 be an integer and α, β be the roots of x2 – (p + 1) x + 1 = 0. Using mathematical induction show that αn + βn i) is an integer ii) and is not divisible by p.
Let p ≥ 3 be an integer and α, β be the roots of x2 – (p + 1) x + 1 = 0. Using mathematical induction show that αn + βn i) is an integer ii) and is not divisible by p.
|
IIT 1992 |
|
|
895 |
The function is not differentiable at a) – 1 b) 0 c) 1 d) 2
The function is not differentiable at a) – 1 b) 0 c) 1 d) 2
|
IIT 1999 |
|
|
896 |
One or more than one correct option Let RS be a diameter of the circle x2 + y2 = 1 where S is the point (1, 0). Let P be a variable point (other than R and S) on the circle and the tangents to the circle at S and P meet at the point Q. The normal to the circle at P intersect a line drawn through Q parallel to RS at a point E. Then the locus of E passes through the point(s) a) b) c) d)
One or more than one correct option Let RS be a diameter of the circle x2 + y2 = 1 where S is the point (1, 0). Let P be a variable point (other than R and S) on the circle and the tangents to the circle at S and P meet at the point Q. The normal to the circle at P intersect a line drawn through Q parallel to RS at a point E. Then the locus of E passes through the point(s) a) b) c) d)
|
IIT 2016 |
|
|
897 |
If x is not an integral multiple of 2π use mathematical induction to prove that
If x is not an integral multiple of 2π use mathematical induction to prove that
|
IIT 1994 |
|
|
898 |
A circle passing through (1, −2) and touching the axis of X at (3, 0) also passes through the point a) (−5, 2) b) (2, −5) c) (5, −2) d) (−2, 5)
A circle passing through (1, −2) and touching the axis of X at (3, 0) also passes through the point a) (−5, 2) b) (2, −5) c) (5, −2) d) (−2, 5)
|
IIT 2013 |
|
|
899 |
The circles and intersect each other in distinct points if a) r < 2 b) r > 8 c) 2 < r < 8 d) 2 ≤ r ≤ 8
The circles and intersect each other in distinct points if a) r < 2 b) r > 8 c) 2 < r < 8 d) 2 ≤ r ≤ 8
|
IIT 1994 |
|
|
900 |
Prove by induction that Pn = Aαn + Bβn for all n ≥ 1 Where α and β are roots of the quadratic equation x2 – (1 – P) x – P (1 – P) = 0, P1 = 1, P2 = 1 – P2, . . ., Pn = (1 – P) Pn – 1 + P (1 – P) Pn – 2 n ≥ 3, and , 
|
IIT 2000 |
|