876 |
Let a1, a2, … an be positive real numbers in Geometric Progression. For each n let An, Gn, Hn be respectively the arithmetic mean, geometric mean and harmonic mean of a1, a2, . . . ., an. Find the expressions for the Geometric mean of G1, G2, . . . .Gn in terms of A1, A2, . . . .,An; H1, H2, . . . .Hn
Let a1, a2, … an be positive real numbers in Geometric Progression. For each n let An, Gn, Hn be respectively the arithmetic mean, geometric mean and harmonic mean of a1, a2, . . . ., an. Find the expressions for the Geometric mean of G1, G2, . . . .Gn in terms of A1, A2, . . . .,An; H1, H2, . . . .Hn
|
IIT 2001 |
|
877 |
Let , 0 < x < 2 are integers m ≠ 0, n > 0 and let p be the left hand derivative of |x − 1| at x = 1. If , then a) n = −1, m = 1 b) n = 1, m = −1 c) n = 2, m = 2 d) n > 2, n = m
Let , 0 < x < 2 are integers m ≠ 0, n > 0 and let p be the left hand derivative of |x − 1| at x = 1. If , then a) n = −1, m = 1 b) n = 1, m = −1 c) n = 2, m = 2 d) n > 2, n = m
|
IIT 2008 |
|
878 |
For three vectors which of the following expressions is not equal to any of the remaining three a)  b)  c)  d) 
For three vectors which of the following expressions is not equal to any of the remaining three a)  b)  c)  d) 
|
IIT 1998 |
|
879 |
If total number of runs scored in n matches is where n > 1 and the runs scored in the kth match are given by k.2n + 1 – k where 1 ≤ k ≤ n. Find n.
If total number of runs scored in n matches is where n > 1 and the runs scored in the kth match are given by k.2n + 1 – k where 1 ≤ k ≤ n. Find n.
|
IIT 2005 |
|
880 |
In a triangle ABC if cotA, cotB, cotC are in Arithmetic Progression then a, b, c are in . . . . . Progression.
In a triangle ABC if cotA, cotB, cotC are in Arithmetic Progression then a, b, c are in . . . . . Progression.
|
IIT 1985 |
|
881 |
For any odd integer n ≥ 1, n3 – (n – 1)3 + . . . + (−)n – 1 13 = . . .
For any odd integer n ≥ 1, n3 – (n – 1)3 + . . . + (−)n – 1 13 = . . .
|
IIT 1996 |
|
882 |
A unit vector which is orthogonal to the vectors and coplanar with the vectors and is a)  b)  c)  d) 
A unit vector which is orthogonal to the vectors and coplanar with the vectors and is a)  b)  c)  d) 
|
IIT 2004 |
|
883 |
The area of the equilateral triangle which contains three coins of unit radius is a) square units b) square units c) square units d) square units
The area of the equilateral triangle which contains three coins of unit radius is a) square units b) square units c) square units d) square units
|
IIT 2005 |
|
884 |
 a) True b) False
 a) True b) False
|
IIT 1982 |
|
885 |
 a) True b) False
 a) True b) False
|
IIT 2004 |
|
886 |
Match the following is Column 1 | Column 2 | i) Positive | A) ( ) | ii) Negative | B) ( ) | | C) ( ) | | D) ( ) |
Match the following is Column 1 | Column 2 | i) Positive | A) ( ) | ii) Negative | B) ( ) | | C) ( ) | | D) ( ) |
|
IIT 1992 |
|
887 |
If the vectors b, c, d, are not coplanar then prove that a is parallel to the vector
If the vectors b, c, d, are not coplanar then prove that a is parallel to the vector
|
IIT 1994 |
|
888 |
Prove by vector method or otherwise, that the point of intersection of the diagonals of a trapezium lies on the line passing through the mid points of the parallel sides (you may assume that the trapezium is not a parallelogram)
Prove by vector method or otherwise, that the point of intersection of the diagonals of a trapezium lies on the line passing through the mid points of the parallel sides (you may assume that the trapezium is not a parallelogram)
|
IIT 1998 |
|
889 |
True / False Let are unit vectors. Suppose that and the angle between B and then  a) True b) False
True / False Let are unit vectors. Suppose that and the angle between B and then  a) True b) False
|
IIT 1981 |
|
890 |
2sinx + tanx > 3x where 0 ≤ x ≤  a) True b) False
2sinx + tanx > 3x where 0 ≤ x ≤  a) True b) False
|
IIT 1990 |
|
891 |
Let f(x) = (x + 1)2 – 1, x ≥ −1 then the set {x : f(x) = f-1(x)} is a)  b) { 0, 1, −1} c) {0, −1} d) Ф
Let f(x) = (x + 1)2 – 1, x ≥ −1 then the set {x : f(x) = f-1(x)} is a)  b) { 0, 1, −1} c) {0, −1} d) Ф
|
IIT 1995 |
|
892 |
A circle touches the line y = x at a point P such that , where O is the origin. The circle contains the point in its interior and the length of its chord on the line is . Determine its equation.
|
IIT 1990 |
|
893 |
a)  b)  c)  d) 
|
IIT 2005 |
|
894 |
equals a)  b)  c)  d) 
|
IIT 1997 |
|
895 |
Let g (x) be a polynomial of degree one and f (x) be defined by  Find the continuous function f (x) satisfying  a)  b) c)  d) None of the above
Let g (x) be a polynomial of degree one and f (x) be defined by  Find the continuous function f (x) satisfying  a)  b) c)  d) None of the above
|
IIT 1987 |
|
896 |
In how many ways can a pack of 52 cards be divided equally amongst 4 players in order?
In how many ways can a pack of 52 cards be divided equally amongst 4 players in order?
|
IIT 1979 |
|
897 |
Find the interval in which ‘a’ lies for which the line y + x = 0 bisects the chord drawn from the point to the circle 
Find the interval in which ‘a’ lies for which the line y + x = 0 bisects the chord drawn from the point to the circle 
|
IIT 1996 |
|
898 |
The points on the curve where the tangent is vertical, is (are) a)  b)  c)  d) 
The points on the curve where the tangent is vertical, is (are) a)  b)  c)  d) 
|
IIT 2002 |
|
899 |
Let T1, T2 be two tangents drawn from (−2, 0) onto the circle C: x2 + y2 = 1. Determine the circle touching C and having T1, T2 as their pair of tangents. Further find the equation of all possible common tangents to the circles, when taken two at a time.
Let T1, T2 be two tangents drawn from (−2, 0) onto the circle C: x2 + y2 = 1. Determine the circle touching C and having T1, T2 as their pair of tangents. Further find the equation of all possible common tangents to the circles, when taken two at a time.
|
IIT 1999 |
|
900 |
Let for all real x and y. If exists and then find f(2) a) – 1 b) 0 c) 1 d) 2
Let for all real x and y. If exists and then find f(2) a) – 1 b) 0 c) 1 d) 2
|
IIT 1995 |
|