All BASICSTANDARDADVANCED

Question(s) from Search: IIT

Search Results Difficulty Solution
876

If f (x) = sinx + cosx, g (x) = x2 – 1 then g ( f (x)) is invertible in the domain

a)

b)

c)

d)

If f (x) = sinx + cosx, g (x) = x2 – 1 then g ( f (x)) is invertible in the domain

a)

b)

c)

d)

IIT 2004
877

One or more correct answers
In a triangle the length of the two larger sides are 10 and 9 respectively. If the angles are in arithmetic progression then the length of the third side can be

a)

b)

c) 5

d)

e) None of these

One or more correct answers
In a triangle the length of the two larger sides are 10 and 9 respectively. If the angles are in arithmetic progression then the length of the third side can be

a)

b)

c) 5

d)

e) None of these

IIT 1987
878

Let f (x) = Ax2 + Bx + C where A, B , C are real numbers. Prove that if f (x) is an integer then the numbers 2A, A + B and C are all integers. Conversely prove that if the numbers 2A, A + B and C are all integers then f ( x ) is an integer whenever x is an integer.

Let f (x) = Ax2 + Bx + C where A, B , C are real numbers. Prove that if f (x) is an integer then the numbers 2A, A + B and C are all integers. Conversely prove that if the numbers 2A, A + B and C are all integers then f ( x ) is an integer whenever x is an integer.

IIT 1998
879

A ladder rests against a wall at an angle α to the horizontal. If its foot is pulled away from the wall through a distance a, so that it slides a distance b down the wall making an angle β with the horizontal, then .

a) True

b) False

A ladder rests against a wall at an angle α to the horizontal. If its foot is pulled away from the wall through a distance a, so that it slides a distance b down the wall making an angle β with the horizontal, then .

a) True

b) False

IIT 1985
880

Let be the vertices of an n sided regular polygon such that   . Then find n.

a) 5

b) 6

c) 7

d) 8

Let be the vertices of an n sided regular polygon such that   . Then find n.

a) 5

b) 6

c) 7

d) 8

IIT 1994
881

A variable plane at a distance of one unit from the origin cuts the coordinate axes at A, B and C. If the centroid D(x, y, z) of triangle ABC satisfies the relation  then the value of k is

a) 9

b)

c) 1

d) 3

A variable plane at a distance of one unit from the origin cuts the coordinate axes at A, B and C. If the centroid D(x, y, z) of triangle ABC satisfies the relation  then the value of k is

a) 9

b)

c) 1

d) 3

IIT 2005
882

Find the equation of the plane passing through the points (2, 1, 0), (4, 1, 1), (5, 0, 1). Find the point Q such that its distance from the plane is equal to the point P(2, 1, 6) from the plane and the line joining P and Q is perpendicular to the plane.

Find the equation of the plane passing through the points (2, 1, 0), (4, 1, 1), (5, 0, 1). Find the point Q such that its distance from the plane is equal to the point P(2, 1, 6) from the plane and the line joining P and Q is perpendicular to the plane.

IIT 2003
883

The unit vector perpendicular to the plane determined by
 is.

The unit vector perpendicular to the plane determined by
 is.

IIT 1983
884

Consider the lines

 ;

 
The shortest distance between L1 and L2 is

a) 0

b)

c)

d)

Consider the lines

 ;

 
The shortest distance between L1 and L2 is

a) 0

b)

c)

d)

IIT 2008
885

Let ABCD is the base of parallelopiped T and Aʹ.BʹCʹDʹ be the upper face. The parallelopiped is compressed so that the vertex Aʹ shifts to Aʹʹ on a parallelepiped S. If the volume of the new parallelopiped is 90% of the parallelopiped T, prove that the locus of Aʹʹ is a plane.

Let ABCD is the base of parallelopiped T and Aʹ.BʹCʹDʹ be the upper face. The parallelopiped is compressed so that the vertex Aʹ shifts to Aʹʹ on a parallelepiped S. If the volume of the new parallelopiped is 90% of the parallelopiped T, prove that the locus of Aʹʹ is a plane.

IIT 2004
886

Show that  =

Show that  =

IIT 1985
887

For all A, B, C, P, Q, R show that
 = 0

For all A, B, C, P, Q, R show that
 = 0

IIT 1996
888

Let f(x) = |x – 1|, then

a)

b)

c)

d) None of these

Let f(x) = |x – 1|, then

a)

b)

c)

d) None of these

IIT 1983
889

The differential equation representing the family of curves  where c is a positive parameter, is of

a) Order 1

b) Order 2

c) Degree 3

d) Degree 4

The differential equation representing the family of curves  where c is a positive parameter, is of

a) Order 1

b) Order 2

c) Degree 3

d) Degree 4

IIT 1999
890

Let a, b, c be real numbers with a2 + b2 + c2 = 1. Show that the equation represents a straight line
 = 0

Let a, b, c be real numbers with a2 + b2 + c2 = 1. Show that the equation represents a straight line
 = 0

IIT 2001
891

Let , then the set  is

a)  

b)  

c)  

d)  ϕ

Let , then the set  is

a)  

b)  

c)  

d)  ϕ

IIT 1995
892

The function f(x) = |px – q|+ r|x|, x  when p > 0, q > 0, r > 0 assumes minimum value only on one point if

a)  p ≠ q

b)  r ≠ q

c)  r ≠ p

d)  p = q = r

The function f(x) = |px – q|+ r|x|, x  when p > 0, q > 0, r > 0 assumes minimum value only on one point if

a)  p ≠ q

b)  r ≠ q

c)  r ≠ p

d)  p = q = r

IIT 1995
893

Let b ≠ 0 and j = 0, 1, 2, .  .  . , n. Let Sj be the area of the region bounded by Y–axis and the curve
.

Show that S0, S1, S2, .  .  .  , Sn are in geometric progression. Also find the sum for a = − 1 and b = π.

a)

b)

c)

d)

Let b ≠ 0 and j = 0, 1, 2, .  .  . , n. Let Sj be the area of the region bounded by Y–axis and the curve
.

Show that S0, S1, S2, .  .  .  , Sn are in geometric progression. Also find the sum for a = − 1 and b = π.

a)

b)

c)

d)

IIT 2001
894

A tangent to the ellipse x2 + 4y2 = 4 meets the ellipse x2 + 2y2 = 6 at P and Q. Prove that tangents at P and Q of the ellipse x2 + 2y2 = 6 are at right angles.

A tangent to the ellipse x2 + 4y2 = 4 meets the ellipse x2 + 2y2 = 6 at P and Q. Prove that tangents at P and Q of the ellipse x2 + 2y2 = 6 are at right angles.

IIT 1997
895

Let f(θ) = sinθ (sinθ + sin3θ) then f(θ)

a) ≥ 0 only when θ ≥ 0

b)  ≤ 0 for all real θ

c)  ≥ 0 for all real θ

d) ≤ θ only when θ ≤ 0

Let f(θ) = sinθ (sinθ + sin3θ) then f(θ)

a) ≥ 0 only when θ ≥ 0

b)  ≤ 0 for all real θ

c)  ≥ 0 for all real θ

d) ≤ θ only when θ ≤ 0

IIT 2000
896

Let y = f(x) is a cubic polynomial having maximum at x = − 1 and  has a minimum at x = 1 and f(−1) = 10, f(1) = − 6. Find the cubic polynomial and also find the distance between the points which are maxima or minima.

a)

b)

c)

d)

Let y = f(x) is a cubic polynomial having maximum at x = − 1 and  has a minimum at x = 1 and f(−1) = 10, f(1) = − 6. Find the cubic polynomial and also find the distance between the points which are maxima or minima.

a)

b)

c)

d)

IIT 2005
897

Each of the following four inequalities given below define a region in the XY–plane. One of these four regions does not have the following property: For any two points (x1, y1) and (x2, y2) in the region, point  is also in the region. The inequality defining the region that does not have this property is

a) x2 + 2y2 ≤ 1

b) max (|x|, |y|) ≤ 1

c) x2 – y2 ≥ 1

d) y2 – x ≤ 0

Each of the following four inequalities given below define a region in the XY–plane. One of these four regions does not have the following property: For any two points (x1, y1) and (x2, y2) in the region, point  is also in the region. The inequality defining the region that does not have this property is

a) x2 + 2y2 ≤ 1

b) max (|x|, |y|) ≤ 1

c) x2 – y2 ≥ 1

d) y2 – x ≤ 0

IIT 1981
898

The domain of definition of the function           is

a)  

b)  

c)  

d)  

The domain of definition of the function           is

a)  

b)  

c)  

d)  

IIT 2002
899

The set of values of x which ln(1 + x) ≤ x is equal to .  .  .  .

a) (−∞, −1)

b) (−1, 0)

c) (0, 1)

d) (1, ∞)

The set of values of x which ln(1 + x) ≤ x is equal to .  .  .  .

a) (−∞, −1)

b) (−1, 0)

c) (0, 1)

d) (1, ∞)

IIT 1987
900

For any positive integers m, n (with n ≥ m), we are given that
  
Deduce that
  

For any positive integers m, n (with n ≥ m), we are given that
  
Deduce that
  

IIT 2000

Play Selected  Login to save this search...