All BASICSTANDARDADVANCED

Question(s) from Search: IIT

Search Results Difficulty Solution
876

If  where
. Given F(5) = 5, then f(10) is equal to

a) 5

b) 10

c) 0

d) 15

If  where
. Given F(5) = 5, then f(10) is equal to

a) 5

b) 10

c) 0

d) 15

IIT 2006
877

Subjective problems
Let .  Find all real values of x for which y takes real values.

a) [− 1, 2)

b)  [3, ∞)

c) [− 1, 2) ∪ [3, ∞)

d) None of the above

Subjective problems
Let .  Find all real values of x for which y takes real values.

a) [− 1, 2)

b)  [3, ∞)

c) [− 1, 2) ∪ [3, ∞)

d) None of the above

IIT 1980
878

Let R be the set of real numbers and f : R → R be such that for all x and y in R, . Prove that f(x) is constant.

Let R be the set of real numbers and f : R → R be such that for all x and y in R, . Prove that f(x) is constant.

IIT 1988
879

If f1(x) and f2(x) are defined by domains D1 and D2 respectively then f1(x) + f2(x) is defined as on D1 ⋂ D2

a) True

b) False

If f1(x) and f2(x) are defined by domains D1 and D2 respectively then f1(x) + f2(x) is defined as on D1 ⋂ D2

a) True

b) False

IIT 1988
880

If  then the domain of f(x) is

If  then the domain of f(x) is

IIT 1985
881

The real numbers x1, x2, x3 satisfying the equation x3 – x2 + βx + γ = 0 are in Arithmetic Progression. Find the interval in which β and γ lie.

The real numbers x1, x2, x3 satisfying the equation x3 – x2 + βx + γ = 0 are in Arithmetic Progression. Find the interval in which β and γ lie.

IIT 1996
882

Let p, q, r be three mutually perpendicular vectors of the same magnitude. If x satisfies the equation p  ((xq)  p) + q ((xr)  q) + r  ((xp)  r) = 0 then x is given by

a)

b)

c)

d)

Let p, q, r be three mutually perpendicular vectors of the same magnitude. If x satisfies the equation p  ((xq)  p) + q ((xr)  q) + r  ((xp)  r) = 0 then x is given by

a)

b)

c)

d)

IIT 1997
883

Let f(x) be a non constant differentiable function defined on (−∞, ∞) such that f(x) = f(1 – x) and  then

a)  vanishes at twice an (0, 1)

b)

c)

d)

Let f(x) be a non constant differentiable function defined on (−∞, ∞) such that f(x) = f(1 – x) and  then

a)  vanishes at twice an (0, 1)

b)

c)

d)

IIT 2008
884

Let and a unit vector c be coplanar. If c is perpendicular to a then c is equal to

a)

b)

c)

d)

Let and a unit vector c be coplanar. If c is perpendicular to a then c is equal to

a)

b)

c)

d)

IIT 1999
885

Number of solutions of  lying in the interval  is

a) 0

b) 1

c) 2

d) 3

Number of solutions of  lying in the interval  is

a) 0

b) 1

c) 2

d) 3

IIT 1993
886

If three complex numbers are in Arithmetic Progression, then they lie on a circle in a complex plane.

a) True

b) False

If three complex numbers are in Arithmetic Progression, then they lie on a circle in a complex plane.

a) True

b) False

IIT 1985
887

Multiple choice

The vector  is

a) A unit vector

b) Makes an angle  with the vector

c) Parallel to vector

d) Perpendicular to the vector

Multiple choice

The vector  is

a) A unit vector

b) Makes an angle  with the vector

c) Parallel to vector

d) Perpendicular to the vector

IIT 1994
888

A1, A2, …… , An are the vertices of  a regular polygon with n sides and O is the centre. Show that
 

A1, A2, …… , An are the vertices of  a regular polygon with n sides and O is the centre. Show that
 

IIT 1982
889

If A, B, C are such that |B| = |C|. Prove that

If A, B, C are such that |B| = |C|. Prove that

IIT 1997
890

Let u and v be unit vectors. If w is a vector such that , then prove that  and that equality holds if and only if  is perpendicular to

Let u and v be unit vectors. If w is a vector such that , then prove that  and that equality holds if and only if  is perpendicular to

IIT 1999
891

Let n be an odd integer. If sin nθ =  for every value of θ, then

a) = 1, = 3

b) = 0, = n

c) = −1, = n

d) = 1, =

Let n be an odd integer. If sin nθ =  for every value of θ, then

a) = 1, = 3

b) = 0, = n

c) = −1, = n

d) = 1, =

IIT 1998
892

Evaluate

a)

b)

c)

d)

Evaluate

a)

b)

c)

d)

IIT 1993
893

One or more than one correct option

The circle C1 : x2 + y2 = 3 with centre at O intersect the parabola x2 = 2y at the point P in the first quadrant. Let the tangent to the circle C1 at P touches other two circles C2 and C3 at R2 and R3 respectively. Suppose C2 and C3 have equal radii 23

and centres Q2 and Q3 respectively. If Q2 and Q3 lie on the Y- axis, then

a) Q2Q3=12

b) R2R3=46

c) areaof2R3isR2

d) areaofPQ2Q3is42

One or more than one correct option

The circle C1 : x2 + y2 = 3 with centre at O intersect the parabola x2 = 2y at the point P in the first quadrant. Let the tangent to the circle C1 at P touches other two circles C2 and C3 at R2 and R3 respectively. Suppose C2 and C3 have equal radii 23

and centres Q2 and Q3 respectively. If Q2 and Q3 lie on the Y- axis, then

a) Q2Q3=12

b) R2R3=46

c) areaof2R3isR2

d) areaofPQ2Q3is42

IIT 2016
894

Let f : ℝ → ℝ be a function defined by f (x) =  . The set of points where f (x) is not differentiable is

a) }

b)

c) {0, 1}

d)

Let f : ℝ → ℝ be a function defined by f (x) =  . The set of points where f (x) is not differentiable is

a) }

b)

c) {0, 1}

d)

IIT 2001
895

The circle passing through the point (−1, 0) and touching the Y – axis at (0, 2) also passes through the point

a) (32,0)

b) (52,0)

c) (32,52)

d) (4,0)

The circle passing through the point (−1, 0) and touching the Y – axis at (0, 2) also passes through the point

a) (32,0)

b) (52,0)

c) (32,52)

d) (4,0)

IIT 2011
896

Let a, b, c be positive real numbers such that b2 – 4ac > 0 and let α1 = c. Prove by induction that
 

Is well defined and  for n=1, 2, …

Here well defined means that the denominator in the expression of  is not zero.

Let a, b, c be positive real numbers such that b2 – 4ac > 0 and let α1 = c. Prove by induction that
 

Is well defined and  for n=1, 2, …

Here well defined means that the denominator in the expression of  is not zero.

IIT 2001
897

Let O be the vertex and Q be any point on the parabola x2 = 8y. If the point P divides the line segment OQ^

internally in the ratio 1 : 3 then the locus of P is

a) x2 = y

b) y2 = x

c) y2 = 2x

d) x2 = 2y

Let O be the vertex and Q be any point on the parabola x2 = 8y. If the point P divides the line segment OQ^

internally in the ratio 1 : 3 then the locus of P is

a) x2 = y

b) y2 = x

c) y2 = 2x

d) x2 = 2y

IIT 2015
898

Solve the following equation for x
 

a) −1

b)

c) 0

d) −1 and

Solve the following equation for x
 

a) −1

b)

c) 0

d) −1 and

IIT 1978
899

If f is a differentiable function satisfying  for all n ≥ 1,

n  I then

a)

b)

c)

d)  is not necessarily zero

If f is a differentiable function satisfying  for all n ≥ 1,

n  I then

a)

b)

c)

d)  is not necessarily zero

IIT 2005
900

Evaluate

Evaluate

IIT 2005

Play Selected  Login to save this search...