|
826 |
Let u and v be unit vectors. If w is a vector such that , then prove that and that equality holds if and only if is perpendicular to 
|
IIT 1999 |
|
|
827 |
Let n be an odd integer. If sin nθ = for every value of θ, then a) = 1, = 3 b) = 0, = n c) = −1, = n d) = 1, = 
|
IIT 1998 |
|
|
828 |
The points with position vectors and are collinear for all real values of k. a) True b) False
The points with position vectors and are collinear for all real values of k. a) True b) False
|
IIT 1984 |
|
|
829 |
Multiple choices Let and (x is measured in radians) then x lies in the interval a)  b)  c)  d) 
Multiple choices Let and (x is measured in radians) then x lies in the interval a)  b)  c)  d) 
|
IIT 1994 |
|
|
830 |
If and the vectors (1, a, a2), (1, b, b2), (1, c, c2) are non-coplanar then the product abc is
If and the vectors (1, a, a2), (1, b, b2), (1, c, c2) are non-coplanar then the product abc is
|
IIT 1985 |
|
|
831 |
Let and c be two vectors perpendicular to each other in the XY–plane. All vectors in the same plane having projections 1 and 2 along b and c respectively, are given by
Let and c be two vectors perpendicular to each other in the XY–plane. All vectors in the same plane having projections 1 and 2 along b and c respectively, are given by
|
IIT 1987 |
|
|
832 |
lies between –4 and 10. a) True b) False
lies between –4 and 10. a) True b) False
|
IIT 1979 |
|
|
833 |
Determine the smallest positive value of x (in degrees) for which a) 30° b) 50° c) 55° d) 60°
Determine the smallest positive value of x (in degrees) for which a) 30° b) 50° c) 55° d) 60°
|
IIT 1993 |
|
|
834 |
The real roots of the equation x + = 1 in the interval (−π, π) are …........... a) x = 0 b) x = ± c) x = 0 , x = ±
The real roots of the equation x + = 1 in the interval (−π, π) are …........... a) x = 0 b) x = ± c) x = 0 , x = ±
|
IIT 1997 |
|
|
835 |
The domain of the derivative of the function f (x) =  a) R { 0 } b) R  c) R  d) R 
The domain of the derivative of the function f (x) =  a) R { 0 } b) R  c) R  d) R 
|
IIT 2002 |
|
|
836 |
The greater of the two angles and is a) A b) B c) Both are equal
The greater of the two angles and is a) A b) B c) Both are equal
|
IIT 1989 |
|
|
837 |
If f (x) = sinx + cosx, g (x) = x2 – 1 then g ( f (x)) is invertible in the domain a)  b)  c)  d) 
If f (x) = sinx + cosx, g (x) = x2 – 1 then g ( f (x)) is invertible in the domain a)  b)  c)  d) 
|
IIT 2004 |
|
|
838 |
One or more correct answers In a triangle the length of the two larger sides are 10 and 9 respectively. If the angles are in arithmetic progression then the length of the third side can be a)  b)  c) 5 d)  e) None of these
One or more correct answers In a triangle the length of the two larger sides are 10 and 9 respectively. If the angles are in arithmetic progression then the length of the third side can be a)  b)  c) 5 d)  e) None of these
|
IIT 1987 |
|
|
839 |
Let f (x) = Ax2 + Bx + C where A, B , C are real numbers. Prove that if f (x) is an integer then the numbers 2A, A + B and C are all integers. Conversely prove that if the numbers 2A, A + B and C are all integers then f ( x ) is an integer whenever x is an integer.
Let f (x) = Ax2 + Bx + C where A, B , C are real numbers. Prove that if f (x) is an integer then the numbers 2A, A + B and C are all integers. Conversely prove that if the numbers 2A, A + B and C are all integers then f ( x ) is an integer whenever x is an integer.
|
IIT 1998 |
|
|
840 |
A ladder rests against a wall at an angle α to the horizontal. If its foot is pulled away from the wall through a distance a, so that it slides a distance b down the wall making an angle β with the horizontal, then . a) True b) False
A ladder rests against a wall at an angle α to the horizontal. If its foot is pulled away from the wall through a distance a, so that it slides a distance b down the wall making an angle β with the horizontal, then . a) True b) False
|
IIT 1985 |
|
|
841 |
Let be the vertices of an n sided regular polygon such that . Then find n. a) 5 b) 6 c) 7 d) 8
Let be the vertices of an n sided regular polygon such that . Then find n. a) 5 b) 6 c) 7 d) 8
|
IIT 1994 |
|
|
842 |
A plane which is perpendicular to two planes and passes through (1, −2, 1). The distance of the plane from the point (1, 2, 2) is a) 0 b) 1 c)  d) 
A plane which is perpendicular to two planes and passes through (1, −2, 1). The distance of the plane from the point (1, 2, 2) is a) 0 b) 1 c)  d) 
|
IIT 2006 |
|
|
843 |
Two lines having direction ratios (1, 0, −1) and (1, −1, 0) are parallel to a plane passing through (1, 1, 1). This plane cuts the coordinate axes at A, B, C. Find the value of the tetrahedron OABC.
Two lines having direction ratios (1, 0, −1) and (1, −1, 0) are parallel to a plane passing through (1, 1, 1). This plane cuts the coordinate axes at A, B, C. Find the value of the tetrahedron OABC.
|
IIT 2004 |
|
|
844 |
Let a, b, c be real numbers. Then the following system of equations in x, y, z + − = 1 − + = 1 − + + = 1 has a) No solution b) Unique solution c) Infinitely many solutions d) Finitely many solutions
Let a, b, c be real numbers. Then the following system of equations in x, y, z + − = 1 − + = 1 − + + = 1 has a) No solution b) Unique solution c) Infinitely many solutions d) Finitely many solutions
|
IIT 1995 |
|
|
845 |
Consider the lines ; The distance of the point (1, 1, 1) from the plane through the point (−1, −2, −1) and whose normal is perpendicular to both lines L1 and L2 is a)  b)  c)  d) 
Consider the lines ; The distance of the point (1, 1, 1) from the plane through the point (−1, −2, −1) and whose normal is perpendicular to both lines L1 and L2 is a)  b)  c)  d) 
|
IIT 2008 |
|
|
846 |
The domain of definition of the function is a) excluding b) [0, 1] excluding 0.5 c) excluding x = 0 d) None of these
The domain of definition of the function is a) excluding b) [0, 1] excluding 0.5 c) excluding x = 0 d) None of these
|
IIT 1983 |
|
|
847 |
A curve passes through and the tangent at cuts the X-axis and Y-axis at A and B respectively such that then a) Equation of the curve is  b) Normal at is  c) Curve passes through  d) Equation of the curve is 
|
IIT 2006 |
|
|
848 |
Let y = f (x) be a curve passing through (1, 1) such that the triangle formed by the coordinate axes and the tangent at any point of the curve lies in the first quadrant and has area 2. Find the differential equation and determine all such possible curves.
Let y = f (x) be a curve passing through (1, 1) such that the triangle formed by the coordinate axes and the tangent at any point of the curve lies in the first quadrant and has area 2. Find the differential equation and determine all such possible curves.
|
IIT 1995 |
|
|
849 |
If  then the two triangles with vertices (x1, y1), (x2, y2), (x3, y3), and (a1, b1), (a2, b2), (a3, b3) must be congruent. a) True b) False
If  then the two triangles with vertices (x1, y1), (x2, y2), (x3, y3), and (a1, b1), (a2, b2), (a3, b3) must be congruent. a) True b) False
|
IIT 1985 |
|
|
850 |
If then a)  b)  c)  d) f and g cannot be determined
If then a)  b)  c)  d) f and g cannot be determined
|
IIT 1998 |
|