|
826 |
If are in harmonic progression then ………… a) 1 b)  c)  d) 
If are in harmonic progression then ………… a) 1 b)  c)  d) 
|
IIT 1997 |
|
|
827 |
If  then x equals a)  b) 1 c)  d) –1
If  then x equals a)  b) 1 c)  d) –1
|
IIT 1999 |
|
|
828 |
Let f ( x ) = , x ≠ 1 then for what value of a is f ( f (x)) = x a)  b)  c) 1 d) 1
Let f ( x ) = , x ≠ 1 then for what value of a is f ( f (x)) = x a)  b)  c) 1 d) 1
|
IIT 2001 |
|
|
829 |
If f : [ 0, ) [ 0, ) and f (x) = then f is a) one-one and onto b) one-one but not onto c) onto but not one-one d) neither one-one nor onto
If f : [ 0, ) [ 0, ) and f (x) = then f is a) one-one and onto b) one-one but not onto c) onto but not one-one d) neither one-one nor onto
|
IIT 2003 |
|
|
830 |
Match the following Let (x, y) be such that =  | Column 1 | Column 2 | | i) If a=1 and b=0 then (x, y) | A)Lies on the circle + =1 | | ii) If a=1 and b=1 then (x, y) | B)Lies on ( −1)( −1) = 0 | | iii) If a=1 and b=2 then (x, y) | C)Lies on y = x | | iv) If a=2 and b=2 then (x, y) | D)Lies on ( −1)( −1) = 0 |
Match the following Let (x, y) be such that =  | Column 1 | Column 2 | | i) If a=1 and b=0 then (x, y) | A)Lies on the circle + =1 | | ii) If a=1 and b=1 then (x, y) | B)Lies on ( −1)( −1) = 0 | | iii) If a=1 and b=2 then (x, y) | C)Lies on y = x | | iv) If a=2 and b=2 then (x, y) | D)Lies on ( −1)( −1) = 0 |
|
IIT 2007 |
|
|
831 |
f (x) =  and g (x) =  a) neither one-one nor onto b) one-one and onto c) one-one and into d) many one and onto
f (x) =  and g (x) =  a) neither one-one nor onto b) one-one and onto c) one-one and into d) many one and onto
|
IIT 2005 |
|
|
832 |
One angle of an isosceles triangle is 120 and the radius of its incircle = . Then the area of the triangle in square units is a)  b)  c)  d) 2π
One angle of an isosceles triangle is 120 and the radius of its incircle = . Then the area of the triangle in square units is a)  b)  c)  d) 2π
|
IIT 2006 |
|
|
833 |
The sides of a triangle are three consecutive natural numbers and its largest angle is twice the smallest one. Determine the sides of triangle. a) 3, 4, 5 b) 4, 5, 6 c) 4, 5, 7 d) 5, 6, 7
The sides of a triangle are three consecutive natural numbers and its largest angle is twice the smallest one. Determine the sides of triangle. a) 3, 4, 5 b) 4, 5, 6 c) 4, 5, 7 d) 5, 6, 7
|
IIT 1991 |
|
|
834 |
A plane which is perpendicular to two planes and passes through (1, −2, 1). The distance of the plane from the point (1, 2, 2) is a) 0 b) 1 c)  d) 
A plane which is perpendicular to two planes and passes through (1, −2, 1). The distance of the plane from the point (1, 2, 2) is a) 0 b) 1 c)  d) 
|
IIT 2006 |
|
|
835 |
Two lines having direction ratios (1, 0, −1) and (1, −1, 0) are parallel to a plane passing through (1, 1, 1). This plane cuts the coordinate axes at A, B, C. Find the value of the tetrahedron OABC.
Two lines having direction ratios (1, 0, −1) and (1, −1, 0) are parallel to a plane passing through (1, 1, 1). This plane cuts the coordinate axes at A, B, C. Find the value of the tetrahedron OABC.
|
IIT 2004 |
|
|
836 |
Let a, b, c be real numbers. Then the following system of equations in x, y, z + − = 1 − + = 1 − + + = 1 has a) No solution b) Unique solution c) Infinitely many solutions d) Finitely many solutions
Let a, b, c be real numbers. Then the following system of equations in x, y, z + − = 1 − + = 1 − + + = 1 has a) No solution b) Unique solution c) Infinitely many solutions d) Finitely many solutions
|
IIT 1995 |
|
|
837 |
Consider the lines ; The distance of the point (1, 1, 1) from the plane through the point (−1, −2, −1) and whose normal is perpendicular to both lines L1 and L2 is a)  b)  c)  d) 
Consider the lines ; The distance of the point (1, 1, 1) from the plane through the point (−1, −2, −1) and whose normal is perpendicular to both lines L1 and L2 is a)  b)  c)  d) 
|
IIT 2008 |
|
|
838 |
Show that the system of equations 3x – y + 4z = 3 x + 2y − 3z = −2 6x + 5y + λz = −3 has at least one solution for any real number λ ≠ −5. Find the set of solutions if λ = −5 a)  b)  c)  d) 
Show that the system of equations 3x – y + 4z = 3 x + 2y − 3z = −2 6x + 5y + λz = −3 has at least one solution for any real number λ ≠ −5. Find the set of solutions if λ = −5 a)  b)  c)  d) 
|
IIT 1983 |
|
|
839 |
The solution of primitive equation is . If and then is a)  b)  c)  d) 
|
IIT 2005 |
|
|
840 |
If then prove that 
If then prove that 
|
IIT 1983 |
|
|
841 |
If M is a 3 x 3 matrix where det (M) = 1 and MMT = I, then prove that det (M – I) = 0.
If M is a 3 x 3 matrix where det (M) = 1 and MMT = I, then prove that det (M – I) = 0.
|
IIT 2004 |
|
|
842 |
Let f(x) be defined for all x > 0 and be continuous. If f(x) satisfies for all x, y and f(e)=1 then a) f(x) is bounded b)  c) x f(x) → 1 as x → 0 d) f(x) = lnx
Let f(x) be defined for all x > 0 and be continuous. If f(x) satisfies for all x, y and f(e)=1 then a) f(x) is bounded b)  c) x f(x) → 1 as x → 0 d) f(x) = lnx
|
IIT 1995 |
|
|
843 |
The number of values of x where the function attains its maximum is a) 0 b) 1 c) 2 d) infinite
The number of values of x where the function attains its maximum is a) 0 b) 1 c) 2 d) infinite
|
IIT 1998 |
|
|
844 |
The domain of the definition of the function y given by the equation is a) 0 < x < 1 b) 0 ≤ x ≤ 1 c) ∞ < x ≤ 0 d) ∞ < x ≤ 1
The domain of the definition of the function y given by the equation is a) 0 < x < 1 b) 0 ≤ x ≤ 1 c) ∞ < x ≤ 0 d) ∞ < x ≤ 1
|
IIT 2000 |
|
|
845 |
Solution of the differential equation is
Solution of the differential equation is
|
IIT 2006 |
|
|
846 |
Let A =  If U1, U2, U3 are column matrices satisfying AU1 = , AU2 = and AU3 =  and U is a 3 x 3 matrix whose columns are U1, U2, U3 then the value of [ 3 2 0 ] U is a)  b)  c)  d) 
Let A =  If U1, U2, U3 are column matrices satisfying AU1 = , AU2 = and AU3 =  and U is a 3 x 3 matrix whose columns are U1, U2, U3 then the value of [ 3 2 0 ] U is a)  b)  c)  d) 
|
IIT 2006 |
|
|
847 |
Let f(x) = , x ≠ then for what value of α, f(f(x)) = x a)  b)  c)  d) 
Let f(x) = , x ≠ then for what value of α, f(f(x)) = x a)  b)  c)  d) 
|
IIT 2001 |
|
|
848 |
If and then f is a) One-one and onto b) One-one but not onto c) Onto but not one-one d) Neither one-one nor onto
If and then f is a) One-one and onto b) One-one but not onto c) Onto but not one-one d) Neither one-one nor onto
|
IIT 2003 |
|
|
849 |
If  and  Then f – g is a) Neither one to one nor onto b) One to one and onto c) One to one and into d) Many one and onto
If  and  Then f – g is a) Neither one to one nor onto b) One to one and onto c) One to one and into d) Many one and onto
|
IIT 2005 |
|
|
850 |
Let a, b, c, d be real numbers in geometric progression. If u, v, w satisfy the system of equations Then show that the roots of the equation and are reciprocal of each other.
|
IIT 1999 |
|