All BASICSTANDARDADVANCED

Question(s) from Search: IIT

Search Results Difficulty Solution
801

If f : [ 0,  )  [ 0,  ) and f (x) =  then f is

a) one-one and onto

b) one-one but not onto

c) onto but not one-one

d) neither one-one nor onto

If f : [ 0,  )  [ 0,  ) and f (x) =  then f is

a) one-one and onto

b) one-one but not onto

c) onto but not one-one

d) neither one-one nor onto

IIT 2003
802

Match the following

Let (x, y) be such that

 =

Column 1

Column 2

i) If a=1 and b=0 then (x, y)

A)Lies on the circle
 +=1

ii) If a=1 and b=1 then (x, y)

B)Lies on
(−1)(−1) = 0

iii) If a=1 and b=2 then (x, y)

C)Lies on y = x

iv) If a=2 and b=2 then (x, y)

D)Lies on
(−1)(−1) = 0

Match the following

Let (x, y) be such that

 =

Column 1

Column 2

i) If a=1 and b=0 then (x, y)

A)Lies on the circle
 +=1

ii) If a=1 and b=1 then (x, y)

B)Lies on
(−1)(−1) = 0

iii) If a=1 and b=2 then (x, y)

C)Lies on y = x

iv) If a=2 and b=2 then (x, y)

D)Lies on
(−1)(−1) = 0

IIT 2007
803

f (x) =
and g (x) =
 

a) neither one-one nor onto

b) one-one and onto

c) one-one and into

d) many one and onto

f (x) =
and g (x) =
 

a) neither one-one nor onto

b) one-one and onto

c) one-one and into

d) many one and onto

IIT 2005
804

One angle of an isosceles triangle is 120 and the radius of its incircle = . Then the area of the triangle in square units is

a)

b)

c)

d) 2π

One angle of an isosceles triangle is 120 and the radius of its incircle = . Then the area of the triangle in square units is

a)

b)

c)

d) 2π

IIT 2006
805

The sides of a triangle are three consecutive natural numbers and its largest angle is twice the smallest one. Determine the sides of triangle.

a) 3, 4, 5

b) 4, 5, 6

c) 4, 5, 7

d) 5, 6, 7

The sides of a triangle are three consecutive natural numbers and its largest angle is twice the smallest one. Determine the sides of triangle.

a) 3, 4, 5

b) 4, 5, 6

c) 4, 5, 7

d) 5, 6, 7

IIT 1991
806

A plane which is perpendicular to two planes  and  passes through (1, −2, 1). The distance of the plane from the point (1, 2, 2) is

a) 0

b) 1

c)

d)

A plane which is perpendicular to two planes  and  passes through (1, −2, 1). The distance of the plane from the point (1, 2, 2) is

a) 0

b) 1

c)

d)

IIT 2006
807

Two lines having direction ratios (1, 0, −1) and (1, −1, 0) are parallel to a plane passing through (1, 1, 1). This plane cuts the coordinate axes at A, B, C. Find the value of the tetrahedron OABC.

Two lines having direction ratios (1, 0, −1) and (1, −1, 0) are parallel to a plane passing through (1, 1, 1). This plane cuts the coordinate axes at A, B, C. Find the value of the tetrahedron OABC.

IIT 2004
808

Let a, b, c be real numbers. Then the following system of equations in x, y, z

  + −  = 1

  − +  = 1

 + +  = 1  has

a) No solution

b) Unique solution

c) Infinitely many solutions

d) Finitely many solutions

Let a, b, c be real numbers. Then the following system of equations in x, y, z

  + −  = 1

  − +  = 1

 + +  = 1  has

a) No solution

b) Unique solution

c) Infinitely many solutions

d) Finitely many solutions

IIT 1995
809

Consider the lines

 ;

 
The distance of the point (1, 1, 1) from the plane through the point (−1, −2, −1) and whose normal is perpendicular to both lines L1 and L2 is

a)

b)

c)

d)

Consider the lines

 ;

 
The distance of the point (1, 1, 1) from the plane through the point (−1, −2, −1) and whose normal is perpendicular to both lines L1 and L2 is

a)

b)

c)

d)

IIT 2008
810

The domain of definition of the function  is

a)  excluding  

b) [0, 1] excluding 0.5

c)  excluding x = 0

d) None of these

The domain of definition of the function  is

a)  excluding  

b) [0, 1] excluding 0.5

c)  excluding x = 0

d) None of these

IIT 1983
811

A curve  passes through  and the tangent at  cuts the X-axis and Y-axis at A and B respectively such that then

a) Equation of the curve is

b) Normal at  is

c) Curve passes through

d) Equation of the curve is

A curve  passes through  and the tangent at  cuts the X-axis and Y-axis at A and B respectively such that then

a) Equation of the curve is

b) Normal at  is

c) Curve passes through

d) Equation of the curve is

IIT 2006
812

Let y = f (x) be a curve passing through (1, 1) such that the triangle formed by the coordinate axes and the tangent at any point of the curve lies in the first quadrant and has area 2. Find the differential equation and determine all such possible curves.

Let y = f (x) be a curve passing through (1, 1) such that the triangle formed by the coordinate axes and the tangent at any point of the curve lies in the first quadrant and has area 2. Find the differential equation and determine all such possible curves.

IIT 1995
813

If  
then the two triangles with vertices (x1, y1), (x2, y2), (x3, y3), and (a1, b1), (a2, b2), (a3, b3) must be congruent.

a) True

b) False

If  
then the two triangles with vertices (x1, y1), (x2, y2), (x3, y3), and (a1, b1), (a2, b2), (a3, b3) must be congruent.

a) True

b) False

IIT 1985
814

If  then

a)

b)

c)

d) f and g cannot be determined

If  then

a)

b)

c)

d) f and g cannot be determined

IIT 1998
815

A curve passes through  and slope at the point  is

. Find the equation of the curve and the area between the

curve and the X-axis in the fourth quadrant.

A curve passes through  and slope at the point  is

. Find the equation of the curve and the area between the

curve and the X-axis in the fourth quadrant.

IIT 2004
816

Find the integral solutions of the following system of inequality
 

a) Ø

b) x = 1

c) x = 2

d) x = 3

Find the integral solutions of the following system of inequality
 

a) Ø

b) x = 1

c) x = 2

d) x = 3

IIT 1979
817

Cosine of angle of intersection of curve y = 3x – 1lnx and y = xx – 1 is

Cosine of angle of intersection of curve y = 3x – 1lnx and y = xx – 1 is

IIT 2006
818

Let A =

 
AU1 =  , AU2 =  and AU3 =

 

a) −1

b) 0

c) 1

d) 3

Let A =

 
AU1 =  , AU2 =  and AU3 =

 

a) −1

b) 0

c) 1

d) 3

IIT 2006
819

If f : [1, ∞) → [2, ∞) is given by  then  equals

a)

b)

c)

d)

If f : [1, ∞) → [2, ∞) is given by  then  equals

a)

b)

c)

d)

IIT 2001
820

For the primitive differential equation
 

then  is

a) 3

b) 5

c) 1

d) 2

For the primitive differential equation
 

then  is

a) 3

b) 5

c) 1

d) 2

IIT 2005
821

Consider the system of linear equations
 
 
 
Find the value of θ for which the systems of equations have non-trivial solutions.

Consider the system of linear equations
 
 
 
Find the value of θ for which the systems of equations have non-trivial solutions.

IIT 1986
822

The set of all solutions of the equation

The set of all solutions of the equation

IIT 1997
823

Multiple choices with one or more than one correct answers
  then

a) x = f(y)

b) f(1) = 3

c) y increases with x for x < 1

d) f is a rational function of x

Multiple choices with one or more than one correct answers
  then

a) x = f(y)

b) f(1) = 3

c) y increases with x for x < 1

d) f is a rational function of x

IIT 1984
824

Given  and f(x) = cosx – x(x + 1). Find the range of f (A).

Given  and f(x) = cosx – x(x + 1). Find the range of f (A).

IIT 1980
825

Multiple choices

If the first and  term of an Arithmetic Progression, a Geometric Progression and a Harmonic Progression are equal and their nth term are a, b, c respectively then

a)

b)

c)

d)

Multiple choices

If the first and  term of an Arithmetic Progression, a Geometric Progression and a Harmonic Progression are equal and their nth term are a, b, c respectively then

a)

b)

c)

d)

IIT 1988

Play Selected  Login to save this search...