|
776 |
The domain of the derivative of the function f (x) =  a) R { 0 } b) R  c) R  d) R 
The domain of the derivative of the function f (x) =  a) R { 0 } b) R  c) R  d) R 
|
IIT 2002 |
|
|
777 |
The greater of the two angles and is a) A b) B c) Both are equal
The greater of the two angles and is a) A b) B c) Both are equal
|
IIT 1989 |
|
|
778 |
If f (x) = sinx + cosx, g (x) = x2 – 1 then g ( f (x)) is invertible in the domain a)  b)  c)  d) 
If f (x) = sinx + cosx, g (x) = x2 – 1 then g ( f (x)) is invertible in the domain a)  b)  c)  d) 
|
IIT 2004 |
|
|
779 |
One or more correct answers In a triangle the length of the two larger sides are 10 and 9 respectively. If the angles are in arithmetic progression then the length of the third side can be a)  b)  c) 5 d)  e) None of these
One or more correct answers In a triangle the length of the two larger sides are 10 and 9 respectively. If the angles are in arithmetic progression then the length of the third side can be a)  b)  c) 5 d)  e) None of these
|
IIT 1987 |
|
|
780 |
Let f (x) = Ax2 + Bx + C where A, B , C are real numbers. Prove that if f (x) is an integer then the numbers 2A, A + B and C are all integers. Conversely prove that if the numbers 2A, A + B and C are all integers then f ( x ) is an integer whenever x is an integer.
Let f (x) = Ax2 + Bx + C where A, B , C are real numbers. Prove that if f (x) is an integer then the numbers 2A, A + B and C are all integers. Conversely prove that if the numbers 2A, A + B and C are all integers then f ( x ) is an integer whenever x is an integer.
|
IIT 1998 |
|
|
781 |
A ladder rests against a wall at an angle α to the horizontal. If its foot is pulled away from the wall through a distance a, so that it slides a distance b down the wall making an angle β with the horizontal, then . a) True b) False
A ladder rests against a wall at an angle α to the horizontal. If its foot is pulled away from the wall through a distance a, so that it slides a distance b down the wall making an angle β with the horizontal, then . a) True b) False
|
IIT 1985 |
|
|
782 |
Let be the vertices of an n sided regular polygon such that . Then find n. a) 5 b) 6 c) 7 d) 8
Let be the vertices of an n sided regular polygon such that . Then find n. a) 5 b) 6 c) 7 d) 8
|
IIT 1994 |
|
|
783 |
A variable plane at a distance of one unit from the origin cuts the coordinate axes at A, B and C. If the centroid D(x, y, z) of triangle ABC satisfies the relation then the value of k is a) 9 b)  c) 1 d) 3
A variable plane at a distance of one unit from the origin cuts the coordinate axes at A, B and C. If the centroid D(x, y, z) of triangle ABC satisfies the relation then the value of k is a) 9 b)  c) 1 d) 3
|
IIT 2005 |
|
|
784 |
Find the equation of the plane passing through the points (2, 1, 0), (4, 1, 1), (5, 0, 1). Find the point Q such that its distance from the plane is equal to the point P(2, 1, 6) from the plane and the line joining P and Q is perpendicular to the plane.
Find the equation of the plane passing through the points (2, 1, 0), (4, 1, 1), (5, 0, 1). Find the point Q such that its distance from the plane is equal to the point P(2, 1, 6) from the plane and the line joining P and Q is perpendicular to the plane.
|
IIT 2003 |
|
|
785 |
The unit vector perpendicular to the plane determined by is.
The unit vector perpendicular to the plane determined by is.
|
IIT 1983 |
|
|
786 |
Consider the lines ; The shortest distance between L1 and L2 is a) 0 b)  c)  d) 
Consider the lines ; The shortest distance between L1 and L2 is a) 0 b)  c)  d) 
|
IIT 2008 |
|
|
787 |
Let ABCD is the base of parallelopiped T and Aʹ.BʹCʹDʹ be the upper face. The parallelopiped is compressed so that the vertex Aʹ shifts to Aʹʹ on a parallelepiped S. If the volume of the new parallelopiped is 90% of the parallelopiped T, prove that the locus of Aʹʹ is a plane.
Let ABCD is the base of parallelopiped T and Aʹ.BʹCʹDʹ be the upper face. The parallelopiped is compressed so that the vertex Aʹ shifts to Aʹʹ on a parallelepiped S. If the volume of the new parallelopiped is 90% of the parallelopiped T, prove that the locus of Aʹʹ is a plane.
|
IIT 2004 |
|
|
788 |
The domain of definition of the function is a) excluding b) [0, 1] excluding 0.5 c) excluding x = 0 d) None of these
The domain of definition of the function is a) excluding b) [0, 1] excluding 0.5 c) excluding x = 0 d) None of these
|
IIT 1983 |
|
|
789 |
A curve passes through and the tangent at cuts the X-axis and Y-axis at A and B respectively such that then a) Equation of the curve is  b) Normal at is  c) Curve passes through  d) Equation of the curve is 
|
IIT 2006 |
|
|
790 |
Let y = f (x) be a curve passing through (1, 1) such that the triangle formed by the coordinate axes and the tangent at any point of the curve lies in the first quadrant and has area 2. Find the differential equation and determine all such possible curves.
Let y = f (x) be a curve passing through (1, 1) such that the triangle formed by the coordinate axes and the tangent at any point of the curve lies in the first quadrant and has area 2. Find the differential equation and determine all such possible curves.
|
IIT 1995 |
|
|
791 |
If  then the two triangles with vertices (x1, y1), (x2, y2), (x3, y3), and (a1, b1), (a2, b2), (a3, b3) must be congruent. a) True b) False
If  then the two triangles with vertices (x1, y1), (x2, y2), (x3, y3), and (a1, b1), (a2, b2), (a3, b3) must be congruent. a) True b) False
|
IIT 1985 |
|
|
792 |
If then a)  b)  c)  d) f and g cannot be determined
If then a)  b)  c)  d) f and g cannot be determined
|
IIT 1998 |
|
|
793 |
A curve passes through and slope at the point is . Find the equation of the curve and the area between the curve and the X-axis in the fourth quadrant.
A curve passes through and slope at the point is . Find the equation of the curve and the area between the curve and the X-axis in the fourth quadrant.
|
IIT 2004 |
|
|
794 |
Find the integral solutions of the following system of inequality a) Ø b) x = 1 c) x = 2 d) x = 3
Find the integral solutions of the following system of inequality a) Ø b) x = 1 c) x = 2 d) x = 3
|
IIT 1979 |
|
|
795 |
Cosine of angle of intersection of curve y = 3x – 1lnx and y = xx – 1 is
Cosine of angle of intersection of curve y = 3x – 1lnx and y = xx – 1 is
|
IIT 2006 |
|
|
796 |
Let A =  AU1 = , AU2 = and AU3 =  a) −1 b) 0 c) 1 d) 3
Let A =  AU1 = , AU2 = and AU3 =  a) −1 b) 0 c) 1 d) 3
|
IIT 2006 |
|
|
797 |
If f : [1, ∞) → [2, ∞) is given by then equals a)  b)  c)  d) 
If f : [1, ∞) → [2, ∞) is given by then equals a)  b)  c)  d) 
|
IIT 2001 |
|
|
798 |
For the primitive differential equation then is a) 3 b) 5 c) 1 d) 2
For the primitive differential equation then is a) 3 b) 5 c) 1 d) 2
|
IIT 2005 |
|
|
799 |
Consider the system of linear equations Find the value of θ for which the systems of equations have non-trivial solutions.
|
IIT 1986 |
|
|
800 |
The set of all solutions of the equation 
The set of all solutions of the equation 
|
IIT 1997 |
|