776 |
Let O (0, 0), P (3, 4), Q (6, 0) be the vertices of the triangle OPQ. The point inside the triangle OPQ is such that OPR, PQR, OQR are of equal area. The coordinates of R are a)  b)  c)  d) 
Let O (0, 0), P (3, 4), Q (6, 0) be the vertices of the triangle OPQ. The point inside the triangle OPQ is such that OPR, PQR, OQR are of equal area. The coordinates of R are a)  b)  c)  d) 
|
IIT 2006 |
|
777 |
If f be a one–one function with domain { x, y, z}and range { 1, 2, 3}. It is given that exactly one of the following statements is true and the remaining statements are false. Determine (1) 1. f(x) = 1 2. f(y) ≠ 1 3. f(z) ≠ 2 a) {0} b) {1} c) {y} d) none of the above
If f be a one–one function with domain { x, y, z}and range { 1, 2, 3}. It is given that exactly one of the following statements is true and the remaining statements are false. Determine (1) 1. f(x) = 1 2. f(y) ≠ 1 3. f(z) ≠ 2 a) {0} b) {1} c) {y} d) none of the above
|
IIT 1982 |
|
778 |
One or more correct answers In triangle ABC the internal angle bisector of ∠A meets the side BC in D. DE is a perpendicular to AD which meets AC in E and AB in F. Then a) AE is harmonic mean of b and c b) AD  c)  d) Δ AEF is isosceles
One or more correct answers In triangle ABC the internal angle bisector of ∠A meets the side BC in D. DE is a perpendicular to AD which meets AC in E and AB in F. Then a) AE is harmonic mean of b and c b) AD  c)  d) Δ AEF is isosceles
|
IIT 2006 |
|
779 |
For a triangle ABC it is given that , then Δ ABC is equilateral. a) True b) False
For a triangle ABC it is given that , then Δ ABC is equilateral. a) True b) False
|
IIT 1984 |
|
780 |
True / False The function f (x) = is not one to one. a) True b) False
True / False The function f (x) = is not one to one. a) True b) False
|
IIT 1983 |
|
781 |
Find the set of all values of a such that are sides of a triangle. a) (0, 3) b) (3, ∞) c) (0, 5) d) (5, ∞)
Find the set of all values of a such that are sides of a triangle. a) (0, 3) b) (3, ∞) c) (0, 5) d) (5, ∞)
|
IIT 1985 |
|
782 |
Fill in the blank Let A be the set of n distinct elements then the total number of distinct functions from A to A is ……… and out of these …… are onto a) n!, 1 b) nn, n! c) nn, 1 d) none of the above
Fill in the blank Let A be the set of n distinct elements then the total number of distinct functions from A to A is ……… and out of these …… are onto a) n!, 1 b) nn, n! c) nn, 1 d) none of the above
|
IIT 1985 |
|
783 |
In a triangle of base a the ratio of the other two sides is r (< 1). Then the altitude of the triangle is less than or equal to . a) True b) False
In a triangle of base a the ratio of the other two sides is r (< 1). Then the altitude of the triangle is less than or equal to . a) True b) False
|
IIT 1991 |
|
784 |
The value of k such that lies in the plane is a) 7 b) – 7 c) No real value d) 4
The value of k such that lies in the plane is a) 7 b) – 7 c) No real value d) 4
|
IIT 2003 |
|
785 |
If ABCD are four points in a space, prove that 
If ABCD are four points in a space, prove that 
|
IIT 1987 |
|
786 |
If a, b, c are distinct positive numbers then the expression ( b + c – a ) ( c + a – b ) ( a + b – c ) –abc is a) Positive b) Negative c) Non–positive d) None of these
If a, b, c are distinct positive numbers then the expression ( b + c – a ) ( c + a – b ) ( a + b – c ) –abc is a) Positive b) Negative c) Non–positive d) None of these
|
IIT 1986 |
|
787 |
Let A and B be square matrices of equal degree, then which one is correct amongst the following a) A + B = B + A b) A + B = A – B c) A – B = B – A d) AB = BA
Let A and B be square matrices of equal degree, then which one is correct amongst the following a) A + B = B + A b) A + B = A – B c) A – B = B – A d) AB = BA
|
IIT 1995 |
|
788 |
The edges of a parallelepiped are of unit length and are parallel to non-coplanar unit vectors such that . Then the volume of the parallelepiped is a)  b)  c)  d) 
The edges of a parallelepiped are of unit length and are parallel to non-coplanar unit vectors such that . Then the volume of the parallelepiped is a)  b)  c)  d) 
|
IIT 2008 |
|
789 |
If P = , A = and Q = PAPT then PT (Q2005) P is equal to a)  b)  c)  d) 
If P = , A = and Q = PAPT then PT (Q2005) P is equal to a)  b)  c)  d) 
|
IIT 2005 |
|
790 |
Consider three planes P1 : x – y + z = 1 P2 : x + y – z = −1 P3 : x – 3y + 3z = 2 Let L1, L2, L3 be lines of intersection of planes P2 and P3, P3 and P1, and P1 and P2 respectively. Statement 1 – At least two of the lines L1, L2, L3 are non parallel Statement 2 – The three planes do not have a common point. a) Statement 1 is true. Statement 2 is true. Statement 2 is a correct explanation of statement 1. b) Statement 1 is true. Statement 2 is true. Statement 2 is not a correct explanation of statement 1. c) Statement 1 is true. Statement 2 is false. d) Statement 1 is false. Statement 2 is true.
Consider three planes P1 : x – y + z = 1 P2 : x + y – z = −1 P3 : x – 3y + 3z = 2 Let L1, L2, L3 be lines of intersection of planes P2 and P3, P3 and P1, and P1 and P2 respectively. Statement 1 – At least two of the lines L1, L2, L3 are non parallel Statement 2 – The three planes do not have a common point. a) Statement 1 is true. Statement 2 is true. Statement 2 is a correct explanation of statement 1. b) Statement 1 is true. Statement 2 is true. Statement 2 is not a correct explanation of statement 1. c) Statement 1 is true. Statement 2 is false. d) Statement 1 is false. Statement 2 is true.
|
IIT 2008 |
|
791 |
Show that the system of equations 3x – y + 4z = 3 x + 2y − 3z = −2 6x + 5y + λz = −3 has at least one solution for any real number λ ≠ −5. Find the set of solutions if λ = −5 a)  b)  c)  d) 
Show that the system of equations 3x – y + 4z = 3 x + 2y − 3z = −2 6x + 5y + λz = −3 has at least one solution for any real number λ ≠ −5. Find the set of solutions if λ = −5 a)  b)  c)  d) 
|
IIT 1983 |
|
792 |
The solution of primitive equation is . If and then is a)  b)  c)  d) 
|
IIT 2005 |
|
793 |
If then prove that 
If then prove that 
|
IIT 1983 |
|
794 |
If M is a 3 x 3 matrix where det (M) = 1 and MMT = I, then prove that det (M – I) = 0.
If M is a 3 x 3 matrix where det (M) = 1 and MMT = I, then prove that det (M – I) = 0.
|
IIT 2004 |
|
795 |
Let f(x) be defined for all x > 0 and be continuous. If f(x) satisfies for all x, y and f(e)=1 then a) f(x) is bounded b)  c) x f(x) → 1 as x → 0 d) f(x) = lnx
Let f(x) be defined for all x > 0 and be continuous. If f(x) satisfies for all x, y and f(e)=1 then a) f(x) is bounded b)  c) x f(x) → 1 as x → 0 d) f(x) = lnx
|
IIT 1995 |
|
796 |
The number of values of x where the function attains its maximum is a) 0 b) 1 c) 2 d) infinite
The number of values of x where the function attains its maximum is a) 0 b) 1 c) 2 d) infinite
|
IIT 1998 |
|
797 |
is
is
|
IIT 2006 |
|
798 |
Suppose for x ≥ . If g(x) is the function whose graph is the reflection of f(x) with respect to the line y = x then g(x) equals a)  b)  c)  d) 
Suppose for x ≥ . If g(x) is the function whose graph is the reflection of f(x) with respect to the line y = x then g(x) equals a)  b)  c)  d) 
|
IIT 2002 |
|
799 |
Domain of definition of the function for real values of x is a)  b)  c)  d) 
Domain of definition of the function for real values of x is a)  b)  c)  d) 
|
IIT 2003 |
|
800 |
Let λ and α be real. Find the set of all values of λ for which the system of linear equations has a non-trivial solution. For λ = 1 find the value of α.
|
IIT 1993 |
|