All BASICSTANDARDADVANCED

Question(s) from Search: IIT

Search Results Difficulty Solution
776

Let a, b are real positive numbers. If a, A1, A2, b are in Arithmetic Progression, a, G1, G2, b are in Geometric Progression and a, H1, H2, b are in Harmonic Progression show that
 

Let a, b are real positive numbers. If a, A1, A2, b are in Arithmetic Progression, a, G1, G2, b are in Geometric Progression and a, H1, H2, b are in Harmonic Progression show that
 

IIT 2002
777

  

a) True

b) False

  

a) True

b) False

IIT 1978
778

Multiple choice

Let  be three vectors. A vector in the plane of b and c whose projection on a is of magnitude  is

a)

b)

c)

d)

Multiple choice

Let  be three vectors. A vector in the plane of b and c whose projection on a is of magnitude  is

a)

b)

c)

d)

IIT 1993
779

Let A be vector parallel to the line of intersection of planes P1 and P2. Plane P1 is parallel to the vectors   and  and that P2 is parallel to  and , then the angle between vector A and a given vector  is

a)

b)

c)

d)

Let A be vector parallel to the line of intersection of planes P1 and P2. Plane P1 is parallel to the vectors   and  and that P2 is parallel to  and , then the angle between vector A and a given vector  is

a)

b)

c)

d)

IIT 2006
780

Find the range of values of t for which  

a) (−, −)

b) ( ,  )

c) (− , −  ) U ( ,  )

d) (−,  )

Find the range of values of t for which  

a) (−, −)

b) ( ,  )

c) (− , −  ) U ( ,  )

d) (−,  )

IIT 2005
781

A vector A has components A1, A2, A3 in a right handed rectangular cartesian coordinate system OXYZ. The coordinate system is rotated about the X–axis through an angle . Find the components of A in the new co-ordinate system in terms of A1, A2, A3.

A vector A has components A1, A2, A3 in a right handed rectangular cartesian coordinate system OXYZ. The coordinate system is rotated about the X–axis through an angle . Find the components of A in the new co-ordinate system in terms of A1, A2, A3.

IIT 1983
782

The value of  is equal to

a)

b)

c)

d)

The value of  is equal to

a)

b)

c)

d)

IIT 1991
783

In a triangle OAB, E is the midpoint of BO and D is a point on AB such that AD : DB = 2 : 1. If OD and AE intercept at P determine the ratio OP : PD using vector methods.

In a triangle OAB, E is the midpoint of BO and D is a point on AB such that AD : DB = 2 : 1. If OD and AE intercept at P determine the ratio OP : PD using vector methods.

IIT 1989
784

The position vectors of the vertices A, B, C of a tetrahedron are  respectively. The altitude from the vertex D to the opposite face ABC meets the median line through A of the triangle ABC at E. If the length of the side AD is 4 and the volume of the tetrahedron is . Find the position vector of E or all possible positions.

The position vectors of the vertices A, B, C of a tetrahedron are  respectively. The altitude from the vertex D to the opposite face ABC meets the median line through A of the triangle ABC at E. If the length of the side AD is 4 and the volume of the tetrahedron is . Find the position vector of E or all possible positions.

IIT 1996
785

For any two vectors u and v prove that

i)

ii)

For any two vectors u and v prove that

i)

ii)

IIT 1998
786

True/False

If  for some non zero vector X then  

a) True

b) False

True/False

If  for some non zero vector X then  

a) True

b) False

IIT 1983
787

If  then  

a) True

b) False

If  then  

a) True

b) False

IIT 1979
788

Let  and  where O, A and B are non-collinear points. Let p denote the area of the quadrilateral OABC and let q denote the area of the quadrilateral with OA and OC as adjacent sides. If p = kq then k = .  .  .  .  .

Let  and  where O, A and B are non-collinear points. Let p denote the area of the quadrilateral OABC and let q denote the area of the quadrilateral with OA and OC as adjacent sides. If p = kq then k = .  .  .  .  .

IIT 1997
789

Prove that  = 2[cosx + cos3x + cos5x + … + cos(2k−1)x] for any positive integer k. Hence prove that  =

Prove that  = 2[cosx + cos3x + cos5x + … + cos(2k−1)x] for any positive integer k. Hence prove that  =

IIT 1990
790

The function
f(x) =|px – q| + r |x|, x ε (−, )
where p > 0, q > 0, r > 0 assumes minimum value on one point if

a) p ≠ q

b) r = q

c) r ≠ p

d) r = p = q

The function
f(x) =|px – q| + r |x|, x ε (−, )
where p > 0, q > 0, r > 0 assumes minimum value on one point if

a) p ≠ q

b) r = q

c) r ≠ p

d) r = p = q

IIT 1995
791

The real roots of the equation x +  = 1 in the interval (−π, π) are …...........

a) x = 0

b) x = ±  

c) x = 0 , x = ±  

The real roots of the equation x +  = 1 in the interval (−π, π) are …...........

a) x = 0

b) x = ±  

c) x = 0 , x = ±  

IIT 1997
792

The domain of the derivative of the function
f (x) =

a) R  { 0 }

b) R

c) R

d) R

The domain of the derivative of the function
f (x) =

a) R  { 0 }

b) R

c) R

d) R

IIT 2002
793

The greater of the two angles
 and  is

a) A

b) B

c) Both are equal

The greater of the two angles
 and  is

a) A

b) B

c) Both are equal

IIT 1989
794

If f (x) = sinx + cosx, g (x) = x2 – 1 then g ( f (x)) is invertible in the domain

a)

b)

c)

d)

If f (x) = sinx + cosx, g (x) = x2 – 1 then g ( f (x)) is invertible in the domain

a)

b)

c)

d)

IIT 2004
795

One or more correct answers
In a triangle the length of the two larger sides are 10 and 9 respectively. If the angles are in arithmetic progression then the length of the third side can be

a)

b)

c) 5

d)

e) None of these

One or more correct answers
In a triangle the length of the two larger sides are 10 and 9 respectively. If the angles are in arithmetic progression then the length of the third side can be

a)

b)

c) 5

d)

e) None of these

IIT 1987
796

Let f (x) = Ax2 + Bx + C where A, B , C are real numbers. Prove that if f (x) is an integer then the numbers 2A, A + B and C are all integers. Conversely prove that if the numbers 2A, A + B and C are all integers then f ( x ) is an integer whenever x is an integer.

Let f (x) = Ax2 + Bx + C where A, B , C are real numbers. Prove that if f (x) is an integer then the numbers 2A, A + B and C are all integers. Conversely prove that if the numbers 2A, A + B and C are all integers then f ( x ) is an integer whenever x is an integer.

IIT 1998
797

A ladder rests against a wall at an angle α to the horizontal. If its foot is pulled away from the wall through a distance a, so that it slides a distance b down the wall making an angle β with the horizontal, then .

a) True

b) False

A ladder rests against a wall at an angle α to the horizontal. If its foot is pulled away from the wall through a distance a, so that it slides a distance b down the wall making an angle β with the horizontal, then .

a) True

b) False

IIT 1985
798

Let be the vertices of an n sided regular polygon such that   . Then find n.

a) 5

b) 6

c) 7

d) 8

Let be the vertices of an n sided regular polygon such that   . Then find n.

a) 5

b) 6

c) 7

d) 8

IIT 1994
799

A variable plane at a distance of one unit from the origin cuts the coordinate axes at A, B and C. If the centroid D(x, y, z) of triangle ABC satisfies the relation  then the value of k is

a) 9

b)

c) 1

d) 3

A variable plane at a distance of one unit from the origin cuts the coordinate axes at A, B and C. If the centroid D(x, y, z) of triangle ABC satisfies the relation  then the value of k is

a) 9

b)

c) 1

d) 3

IIT 2005
800

Find the equation of the plane passing through the points (2, 1, 0), (4, 1, 1), (5, 0, 1). Find the point Q such that its distance from the plane is equal to the point P(2, 1, 6) from the plane and the line joining P and Q is perpendicular to the plane.

Find the equation of the plane passing through the points (2, 1, 0), (4, 1, 1), (5, 0, 1). Find the point Q such that its distance from the plane is equal to the point P(2, 1, 6) from the plane and the line joining P and Q is perpendicular to the plane.

IIT 2003

Play Selected  Login to save this search...