|
776 |
The value of . Given that a, x, y, z, b are in Arithmetic Progression while the value of . If a, x, y, z, b are in Harmonic Progression then find a and b.
The value of . Given that a, x, y, z, b are in Arithmetic Progression while the value of . If a, x, y, z, b are in Harmonic Progression then find a and b.
|
IIT 1978 |
|
|
777 |
Let {x} and [x] denote the fractional and integral part of a real number x respectively. Solve 4{x} = x + [x]
Let {x} and [x] denote the fractional and integral part of a real number x respectively. Solve 4{x} = x + [x]
|
IIT 1994 |
|
|
778 |
If S1, S2, . . . .,Sn are the sums of infinite geometric series whose first terms are 1, 2, 3, . . ., n and whose common ratios are respectively, then find the value of 
If S1, S2, . . . .,Sn are the sums of infinite geometric series whose first terms are 1, 2, 3, . . ., n and whose common ratios are respectively, then find the value of 
|
IIT 1991 |
|
|
779 |
If are three non–coplanar vectors, then equals a) 0 b)  c)  d) 
If are three non–coplanar vectors, then equals a) 0 b)  c)  d) 
|
IIT 1995 |
|
|
780 |
Let a, b are real positive numbers. If a, A1, A2, b are in Arithmetic Progression, a, G1, G2, b are in Geometric Progression and a, H1, H2, b are in Harmonic Progression show that 
Let a, b are real positive numbers. If a, A1, A2, b are in Arithmetic Progression, a, G1, G2, b are in Geometric Progression and a, H1, H2, b are in Harmonic Progression show that 
|
IIT 2002 |
|
|
781 |
a) True b) False
a) True b) False
|
IIT 1978 |
|
|
782 |
Multiple choice Let be three vectors. A vector in the plane of b and c whose projection on a is of magnitude is a)  b)  c)  d) 
Multiple choice Let be three vectors. A vector in the plane of b and c whose projection on a is of magnitude is a)  b)  c)  d) 
|
IIT 1993 |
|
|
783 |
Let A be vector parallel to the line of intersection of planes P1 and P2. Plane P1 is parallel to the vectors and and that P2 is parallel to and , then the angle between vector A and a given vector is a)  b)  c)  d) 
|
IIT 2006 |
|
|
784 |
Find the range of values of t for which a) (− , − ) b) ( , ) c) (− , − ) U ( , ) d) (− , )
|
IIT 2005 |
|
|
785 |
A vector A has components A1, A2, A3 in a right handed rectangular cartesian coordinate system OXYZ. The coordinate system is rotated about the X–axis through an angle . Find the components of A in the new co-ordinate system in terms of A1, A2, A3.
A vector A has components A1, A2, A3 in a right handed rectangular cartesian coordinate system OXYZ. The coordinate system is rotated about the X–axis through an angle . Find the components of A in the new co-ordinate system in terms of A1, A2, A3.
|
IIT 1983 |
|
|
786 |
The value of is equal to a)  b)  c)  d) 
The value of is equal to a)  b)  c)  d) 
|
IIT 1991 |
|
|
787 |
In a triangle OAB, E is the midpoint of BO and D is a point on AB such that AD : DB = 2 : 1. If OD and AE intercept at P determine the ratio OP : PD using vector methods.
In a triangle OAB, E is the midpoint of BO and D is a point on AB such that AD : DB = 2 : 1. If OD and AE intercept at P determine the ratio OP : PD using vector methods.
|
IIT 1989 |
|
|
788 |
The position vectors of the vertices A, B, C of a tetrahedron are respectively. The altitude from the vertex D to the opposite face ABC meets the median line through A of the triangle ABC at E. If the length of the side AD is 4 and the volume of the tetrahedron is . Find the position vector of E or all possible positions.
The position vectors of the vertices A, B, C of a tetrahedron are respectively. The altitude from the vertex D to the opposite face ABC meets the median line through A of the triangle ABC at E. If the length of the side AD is 4 and the volume of the tetrahedron is . Find the position vector of E or all possible positions.
|
IIT 1996 |
|
|
789 |
For any two vectors u and v prove that i)  ii) 
For any two vectors u and v prove that i)  ii) 
|
IIT 1998 |
|
|
790 |
True/False If for some non zero vector X then a) True b) False
True/False If for some non zero vector X then a) True b) False
|
IIT 1983 |
|
|
791 |
If and the vectors (1, a, a2), (1, b, b2), (1, c, c2) are non-coplanar then the product abc is
If and the vectors (1, a, a2), (1, b, b2), (1, c, c2) are non-coplanar then the product abc is
|
IIT 1985 |
|
|
792 |
Let and c be two vectors perpendicular to each other in the XY–plane. All vectors in the same plane having projections 1 and 2 along b and c respectively, are given by
Let and c be two vectors perpendicular to each other in the XY–plane. All vectors in the same plane having projections 1 and 2 along b and c respectively, are given by
|
IIT 1987 |
|
|
793 |
lies between –4 and 10. a) True b) False
lies between –4 and 10. a) True b) False
|
IIT 1979 |
|
|
794 |
Determine the smallest positive value of x (in degrees) for which a) 30° b) 50° c) 55° d) 60°
Determine the smallest positive value of x (in degrees) for which a) 30° b) 50° c) 55° d) 60°
|
IIT 1993 |
|
|
795 |
The real roots of the equation x + = 1 in the interval (−π, π) are …........... a) x = 0 b) x = ± c) x = 0 , x = ±
The real roots of the equation x + = 1 in the interval (−π, π) are …........... a) x = 0 b) x = ± c) x = 0 , x = ±
|
IIT 1997 |
|
|
796 |
The domain of the derivative of the function f (x) =  a) R { 0 } b) R  c) R  d) R 
The domain of the derivative of the function f (x) =  a) R { 0 } b) R  c) R  d) R 
|
IIT 2002 |
|
|
797 |
The greater of the two angles and is a) A b) B c) Both are equal
The greater of the two angles and is a) A b) B c) Both are equal
|
IIT 1989 |
|
|
798 |
If f (x) = sinx + cosx, g (x) = x2 – 1 then g ( f (x)) is invertible in the domain a)  b)  c)  d) 
If f (x) = sinx + cosx, g (x) = x2 – 1 then g ( f (x)) is invertible in the domain a)  b)  c)  d) 
|
IIT 2004 |
|
|
799 |
One or more correct answers In a triangle the length of the two larger sides are 10 and 9 respectively. If the angles are in arithmetic progression then the length of the third side can be a)  b)  c) 5 d)  e) None of these
One or more correct answers In a triangle the length of the two larger sides are 10 and 9 respectively. If the angles are in arithmetic progression then the length of the third side can be a)  b)  c) 5 d)  e) None of these
|
IIT 1987 |
|
|
800 |
Let f (x) = Ax2 + Bx + C where A, B , C are real numbers. Prove that if f (x) is an integer then the numbers 2A, A + B and C are all integers. Conversely prove that if the numbers 2A, A + B and C are all integers then f ( x ) is an integer whenever x is an integer.
Let f (x) = Ax2 + Bx + C where A, B , C are real numbers. Prove that if f (x) is an integer then the numbers 2A, A + B and C are all integers. Conversely prove that if the numbers 2A, A + B and C are all integers then f ( x ) is an integer whenever x is an integer.
|
IIT 1998 |
|