All BASICSTANDARDADVANCED

Question(s) from Search: IIT

Search Results Difficulty Solution
776

The domain of the derivative of the function
f (x) =

a) R  { 0 }

b) R

c) R

d) R

The domain of the derivative of the function
f (x) =

a) R  { 0 }

b) R

c) R

d) R

IIT 2002
777

The greater of the two angles
 and  is

a) A

b) B

c) Both are equal

The greater of the two angles
 and  is

a) A

b) B

c) Both are equal

IIT 1989
778

If f (x) = sinx + cosx, g (x) = x2 – 1 then g ( f (x)) is invertible in the domain

a)

b)

c)

d)

If f (x) = sinx + cosx, g (x) = x2 – 1 then g ( f (x)) is invertible in the domain

a)

b)

c)

d)

IIT 2004
779

One or more correct answers
In a triangle the length of the two larger sides are 10 and 9 respectively. If the angles are in arithmetic progression then the length of the third side can be

a)

b)

c) 5

d)

e) None of these

One or more correct answers
In a triangle the length of the two larger sides are 10 and 9 respectively. If the angles are in arithmetic progression then the length of the third side can be

a)

b)

c) 5

d)

e) None of these

IIT 1987
780

Let f (x) = Ax2 + Bx + C where A, B , C are real numbers. Prove that if f (x) is an integer then the numbers 2A, A + B and C are all integers. Conversely prove that if the numbers 2A, A + B and C are all integers then f ( x ) is an integer whenever x is an integer.

Let f (x) = Ax2 + Bx + C where A, B , C are real numbers. Prove that if f (x) is an integer then the numbers 2A, A + B and C are all integers. Conversely prove that if the numbers 2A, A + B and C are all integers then f ( x ) is an integer whenever x is an integer.

IIT 1998
781

A ladder rests against a wall at an angle α to the horizontal. If its foot is pulled away from the wall through a distance a, so that it slides a distance b down the wall making an angle β with the horizontal, then .

a) True

b) False

A ladder rests against a wall at an angle α to the horizontal. If its foot is pulled away from the wall through a distance a, so that it slides a distance b down the wall making an angle β with the horizontal, then .

a) True

b) False

IIT 1985
782

Let be the vertices of an n sided regular polygon such that   . Then find n.

a) 5

b) 6

c) 7

d) 8

Let be the vertices of an n sided regular polygon such that   . Then find n.

a) 5

b) 6

c) 7

d) 8

IIT 1994
783

A variable plane at a distance of one unit from the origin cuts the coordinate axes at A, B and C. If the centroid D(x, y, z) of triangle ABC satisfies the relation  then the value of k is

a) 9

b)

c) 1

d) 3

A variable plane at a distance of one unit from the origin cuts the coordinate axes at A, B and C. If the centroid D(x, y, z) of triangle ABC satisfies the relation  then the value of k is

a) 9

b)

c) 1

d) 3

IIT 2005
784

Find the equation of the plane passing through the points (2, 1, 0), (4, 1, 1), (5, 0, 1). Find the point Q such that its distance from the plane is equal to the point P(2, 1, 6) from the plane and the line joining P and Q is perpendicular to the plane.

Find the equation of the plane passing through the points (2, 1, 0), (4, 1, 1), (5, 0, 1). Find the point Q such that its distance from the plane is equal to the point P(2, 1, 6) from the plane and the line joining P and Q is perpendicular to the plane.

IIT 2003
785

The unit vector perpendicular to the plane determined by
 is.

The unit vector perpendicular to the plane determined by
 is.

IIT 1983
786

Consider the lines

 ;

 
The shortest distance between L1 and L2 is

a) 0

b)

c)

d)

Consider the lines

 ;

 
The shortest distance between L1 and L2 is

a) 0

b)

c)

d)

IIT 2008
787

Let ABCD is the base of parallelopiped T and Aʹ.BʹCʹDʹ be the upper face. The parallelopiped is compressed so that the vertex Aʹ shifts to Aʹʹ on a parallelepiped S. If the volume of the new parallelopiped is 90% of the parallelopiped T, prove that the locus of Aʹʹ is a plane.

Let ABCD is the base of parallelopiped T and Aʹ.BʹCʹDʹ be the upper face. The parallelopiped is compressed so that the vertex Aʹ shifts to Aʹʹ on a parallelepiped S. If the volume of the new parallelopiped is 90% of the parallelopiped T, prove that the locus of Aʹʹ is a plane.

IIT 2004
788

The domain of definition of the function  is

a)  excluding  

b) [0, 1] excluding 0.5

c)  excluding x = 0

d) None of these

The domain of definition of the function  is

a)  excluding  

b) [0, 1] excluding 0.5

c)  excluding x = 0

d) None of these

IIT 1983
789

A curve  passes through  and the tangent at  cuts the X-axis and Y-axis at A and B respectively such that then

a) Equation of the curve is

b) Normal at  is

c) Curve passes through

d) Equation of the curve is

A curve  passes through  and the tangent at  cuts the X-axis and Y-axis at A and B respectively such that then

a) Equation of the curve is

b) Normal at  is

c) Curve passes through

d) Equation of the curve is

IIT 2006
790

Let y = f (x) be a curve passing through (1, 1) such that the triangle formed by the coordinate axes and the tangent at any point of the curve lies in the first quadrant and has area 2. Find the differential equation and determine all such possible curves.

Let y = f (x) be a curve passing through (1, 1) such that the triangle formed by the coordinate axes and the tangent at any point of the curve lies in the first quadrant and has area 2. Find the differential equation and determine all such possible curves.

IIT 1995
791

If  
then the two triangles with vertices (x1, y1), (x2, y2), (x3, y3), and (a1, b1), (a2, b2), (a3, b3) must be congruent.

a) True

b) False

If  
then the two triangles with vertices (x1, y1), (x2, y2), (x3, y3), and (a1, b1), (a2, b2), (a3, b3) must be congruent.

a) True

b) False

IIT 1985
792

If  then

a)

b)

c)

d) f and g cannot be determined

If  then

a)

b)

c)

d) f and g cannot be determined

IIT 1998
793

A curve passes through  and slope at the point  is

. Find the equation of the curve and the area between the

curve and the X-axis in the fourth quadrant.

A curve passes through  and slope at the point  is

. Find the equation of the curve and the area between the

curve and the X-axis in the fourth quadrant.

IIT 2004
794

Find the integral solutions of the following system of inequality
 

a) Ø

b) x = 1

c) x = 2

d) x = 3

Find the integral solutions of the following system of inequality
 

a) Ø

b) x = 1

c) x = 2

d) x = 3

IIT 1979
795

Cosine of angle of intersection of curve y = 3x – 1lnx and y = xx – 1 is

Cosine of angle of intersection of curve y = 3x – 1lnx and y = xx – 1 is

IIT 2006
796

Let A =

 
AU1 =  , AU2 =  and AU3 =

 

a) −1

b) 0

c) 1

d) 3

Let A =

 
AU1 =  , AU2 =  and AU3 =

 

a) −1

b) 0

c) 1

d) 3

IIT 2006
797

If f : [1, ∞) → [2, ∞) is given by  then  equals

a)

b)

c)

d)

If f : [1, ∞) → [2, ∞) is given by  then  equals

a)

b)

c)

d)

IIT 2001
798

For the primitive differential equation
 

then  is

a) 3

b) 5

c) 1

d) 2

For the primitive differential equation
 

then  is

a) 3

b) 5

c) 1

d) 2

IIT 2005
799

Consider the system of linear equations
 
 
 
Find the value of θ for which the systems of equations have non-trivial solutions.

Consider the system of linear equations
 
 
 
Find the value of θ for which the systems of equations have non-trivial solutions.

IIT 1986
800

The set of all solutions of the equation

The set of all solutions of the equation

IIT 1997

Play Selected  Login to save this search...