All BASICSTANDARDADVANCED

Question(s) from Search: IIT

Search Results Difficulty Solution
776

A curve passes through  and slope at the point  is

. Find the equation of the curve and the area between the

curve and the X-axis in the fourth quadrant.

A curve passes through  and slope at the point  is

. Find the equation of the curve and the area between the

curve and the X-axis in the fourth quadrant.

IIT 2004
777

Find the integral solutions of the following system of inequality
 

a) Ø

b) x = 1

c) x = 2

d) x = 3

Find the integral solutions of the following system of inequality
 

a) Ø

b) x = 1

c) x = 2

d) x = 3

IIT 1979
778

Cosine of angle of intersection of curve y = 3x – 1lnx and y = xx – 1 is

Cosine of angle of intersection of curve y = 3x – 1lnx and y = xx – 1 is

IIT 2006
779

Let A =

 
AU1 =  , AU2 =  and AU3 =

 

a) −1

b) 0

c) 1

d) 3

Let A =

 
AU1 =  , AU2 =  and AU3 =

 

a) −1

b) 0

c) 1

d) 3

IIT 2006
780

If f : [1, ∞) → [2, ∞) is given by  then  equals

a)

b)

c)

d)

If f : [1, ∞) → [2, ∞) is given by  then  equals

a)

b)

c)

d)

IIT 2001
781

For the primitive differential equation
 

then  is

a) 3

b) 5

c) 1

d) 2

For the primitive differential equation
 

then  is

a) 3

b) 5

c) 1

d) 2

IIT 2005
782

Consider the system of linear equations
 
 
 
Find the value of θ for which the systems of equations have non-trivial solutions.

Consider the system of linear equations
 
 
 
Find the value of θ for which the systems of equations have non-trivial solutions.

IIT 1986
783

The set of all solutions of the equation

The set of all solutions of the equation

IIT 1997
784

Multiple choices with one or more than one correct answers
  then

a) x = f(y)

b) f(1) = 3

c) y increases with x for x < 1

d) f is a rational function of x

Multiple choices with one or more than one correct answers
  then

a) x = f(y)

b) f(1) = 3

c) y increases with x for x < 1

d) f is a rational function of x

IIT 1984
785

Given  and f(x) = cosx – x(x + 1). Find the range of f (A).

Given  and f(x) = cosx – x(x + 1). Find the range of f (A).

IIT 1980
786

Multiple choices

If the first and  term of an Arithmetic Progression, a Geometric Progression and a Harmonic Progression are equal and their nth term are a, b, c respectively then

a)

b)

c)

d)

Multiple choices

If the first and  term of an Arithmetic Progression, a Geometric Progression and a Harmonic Progression are equal and their nth term are a, b, c respectively then

a)

b)

c)

d)

IIT 1988
787

Show that the value of  wherever defined, never lies between  and 3.

Show that the value of  wherever defined, never lies between  and 3.

IIT 1992
788

Let  where A, B, C are real numbers. Prove that if f(n) is an integer whenever n is an integer, then the numbers 2A, A + B and C are all integers. Conversely prove that if the numbers 2A, A + B and C all integers then f(n) is an integer whenever n is an integer.

Let  where A, B, C are real numbers. Prove that if f(n) is an integer whenever n is an integer, then the numbers 2A, A + B and C are all integers. Conversely prove that if the numbers 2A, A + B and C all integers then f(n) is an integer whenever n is an integer.

IIT 1998
789

Let  and  be three non-zero vectors such that c is a unit vector perpendicular to both the vectors a and b and the angle between the vectors a and b is  then
 is equal to

a) 1

b)

c)

d) None of these

Let  and  be three non-zero vectors such that c is a unit vector perpendicular to both the vectors a and b and the angle between the vectors a and b is  then
 is equal to

a) 1

b)

c)

d) None of these

IIT 1986
790

Does there exist a Geometric Progression containing 27, 8 and 12 as three of its terms? If it exists, how many such progressions are possible?

Does there exist a Geometric Progression containing 27, 8 and 12 as three of its terms? If it exists, how many such progressions are possible?

IIT 1982
791

The values of  lies in the interval .  .  .

The values of  lies in the interval .  .  .

IIT 1983
792

If  and  then (gof)(x) is equal to

If  and  then (gof)(x) is equal to

IIT 1996
793

If 0 < x < 1, then  is equal to

If 0 < x < 1, then  is equal to

IIT 2008
794

Let  , 0 < x < 2 are integers m ≠ 0, n > 0 and let p be the left hand derivative of |x − 1| at x = 1. If , then

a) n = −1, m = 1

b) n = 1, m = −1

c) n = 2, m = 2

d) n > 2, n = m

Let  , 0 < x < 2 are integers m ≠ 0, n > 0 and let p be the left hand derivative of |x − 1| at x = 1. If , then

a) n = −1, m = 1

b) n = 1, m = −1

c) n = 2, m = 2

d) n > 2, n = m

IIT 2008
795

For three vectors  which of the following expressions is not equal to any of the remaining three

a)

b)

c)

d)

For three vectors  which of the following expressions is not equal to any of the remaining three

a)

b)

c)

d)

IIT 1998
796

If total number of runs scored in n matches is
 where n > 1 and the runs scored in the kth match are given by k.2n + 1 – k  where 1 ≤ k ≤ n. Find n.

If total number of runs scored in n matches is
 where n > 1 and the runs scored in the kth match are given by k.2n + 1 – k  where 1 ≤ k ≤ n. Find n.

IIT 2005
797

In a triangle ABC if cotA, cotB, cotC are in Arithmetic Progression then a, b, c are in .  .  .  .  . Progression.

In a triangle ABC if cotA, cotB, cotC are in Arithmetic Progression then a, b, c are in .  .  .  .  . Progression.

IIT 1985
798

For any odd integer n ≥ 1,
n3 – (n – 1)3 + .  .  . + (−)n – 1 13 = .  .  .

For any odd integer n ≥ 1,
n3 – (n – 1)3 + .  .  . + (−)n – 1 13 = .  .  .

IIT 1996
799

A unit vector which is orthogonal to the vectors  and

coplanar with the vectors  and  is

a)

b)

c)

d)

A unit vector which is orthogonal to the vectors  and

coplanar with the vectors  and  is

a)

b)

c)

d)

IIT 2004
800

The area of the equilateral triangle which contains three coins of unit radius is

a)  square units

b)  square units

c)  square units

d)  square units

The area of the equilateral triangle which contains three coins of unit radius is

a)  square units

b)  square units

c)  square units

d)  square units

IIT 2005

Play Selected  Login to save this search...