All BASICSTANDARDADVANCED

Question(s) from Search: IIT

Search Results Difficulty Solution
701

Multiple choice

There exists a triangle ABC satisfying the conditions

a) bsinA = a, A <

b) bsinA > a, A >

c) bsinA > a, A <

d) bsinA < a, A <, b > a

e) bsinA < a, A >, b = a

Multiple choice

There exists a triangle ABC satisfying the conditions

a) bsinA = a, A <

b) bsinA > a, A >

c) bsinA > a, A <

d) bsinA < a, A <, b > a

e) bsinA < a, A >, b = a

IIT 1986
702

With usual notation if in a triangle ABC,  then

 .

a) True

b) False

With usual notation if in a triangle ABC,  then

 .

a) True

b) False

IIT 1984
703

If in a triangle ABC, cosA cosB + sinA sinB sin C = 1 then show that  a : b : c = 1 : 1 :

a) True

b) False

If in a triangle ABC, cosA cosB + sinA sinB sin C = 1 then show that  a : b : c = 1 : 1 :

a) True

b) False

IIT 1986
704

If the lines  and  intersect then the value of k is

a)

b)

c)

d)

If the lines  and  intersect then the value of k is

a)

b)

c)

d)

IIT 2004
705

The area of a triangle whose vertices are
 is

The area of a triangle whose vertices are
 is

IIT 1983
706

The parameter on which the value of the determinant
Δ =
does not depend upon is

a) a

b) p

c) d

d) x

The parameter on which the value of the determinant
Δ =
does not depend upon is

a) a

b) p

c) d

d) x

IIT 1997
707

Consider the lines

 ;

 
The unit vector perpendicular to both L1 and L2 is

a)

b)

c)

d)

Consider the lines

 ;

 
The unit vector perpendicular to both L1 and L2 is

a)

b)

c)

d)

IIT 2008
708

If b > a then the equation ( x – a ) ( x – b )1 = 0 has

a) Both roots in [ a, b ]

b) Both roots in ( , a )

c) Both roots in (  )

d) One root in ( , a ) and other in ( )

If b > a then the equation ( x – a ) ( x – b )1 = 0 has

a) Both roots in [ a, b ]

b) Both roots in ( , a )

c) Both roots in (  )

d) One root in ( , a ) and other in ( )

IIT 2000
709

For what value of m does the system of equations 3x + my = m, 2x − 5y = 20 have a solution satisfying the condition x > 0, y > 0.

a) m  (−∞, ∞)

b) m  (−∞, −15) ∪ (30, ∞)

c)  

d)  

For what value of m does the system of equations 3x + my = m, 2x − 5y = 20 have a solution satisfying the condition x > 0, y > 0.

a) m  (−∞, ∞)

b) m  (−∞, −15) ∪ (30, ∞)

c)  

d)  

IIT 1979
710

If α is a repeated root of a quadratic equation f(x) = 0 and A(x), B(x), C(x) be polynomials of degree 3, 4, 5 respectively, Then show that
 

is divisible by f(x) where prime denotes the derivatives.

If α is a repeated root of a quadratic equation f(x) = 0 and A(x), B(x), C(x) be polynomials of degree 3, 4, 5 respectively, Then show that
 

is divisible by f(x) where prime denotes the derivatives.

IIT 1984
711

The differential equation  determines a family of circles with

a) Variable radii and a fixed centre ( 0, 1)

b) Variable radii and a fixed centre ( 0, -1)

c) Fixed radius and a variable centre along the X-axis

d) Fixed radius and a variable centre along the Y-axis

The differential equation  determines a family of circles with

a) Variable radii and a fixed centre ( 0, 1)

b) Variable radii and a fixed centre ( 0, -1)

c) Fixed radius and a variable centre along the X-axis

d) Fixed radius and a variable centre along the Y-axis

IIT 2007
712

Prove that for all values of θ
 = 0

Prove that for all values of θ
 = 0

IIT 2000
713

If   and  , then show that
 

If   and  , then show that
 

IIT 1989
714

A = , B = , U = , V =

If AX = U has infinitely many solutions, prove that BX = V has no unique solution. Also prove that if afd ≠ 0 then BX = V has no solution. X is a vector.

A = , B = , U = , V =

If AX = U has infinitely many solutions, prove that BX = V has no unique solution. Also prove that if afd ≠ 0 then BX = V has no solution. X is a vector.

IIT 2004
715

If , for every real number x, then the minimum value of f

a) does not exist because f is unbounded

b) is not attained even though f is bounded

c) is equal to 1

d) is equal to –1

If , for every real number x, then the minimum value of f

a) does not exist because f is unbounded

b) is not attained even though f is bounded

c) is equal to 1

d) is equal to –1

IIT 1998
716

Let u (x) and v (x) satisfy the differential equations and  where p (x), f (x) and g (x) are continuous functions. If u (x1) > v (x1) for some x1 and f (x) > g (x) for all x > x1, prove that at any point (x, y) where x > x1 does not satisfy the equations y = u (x) and y = v (x)

Let u (x) and v (x) satisfy the differential equations and  where p (x), f (x) and g (x) are continuous functions. If u (x1) > v (x1) for some x1 and f (x) > g (x) for all x > x1, prove that at any point (x, y) where x > x1 does not satisfy the equations y = u (x) and y = v (x)

IIT 1997
717

The function  is defined by then  is

a)

b)

c)

d) None of these

The function  is defined by then  is

a)

b)

c)

d) None of these

IIT 1999
718

  is

  is

IIT 2006
719

Suppose  for x ≥ . If g(x) is the function whose graph is the reflection of f(x) with respect to the line y = x then g(x) equals

a)

b)

c)

d)

Suppose  for x ≥ . If g(x) is the function whose graph is the reflection of f(x) with respect to the line y = x then g(x) equals

a)

b)

c)

d)

IIT 2002
720

Domain of definition of the function   for real values of x is

a)

b)

c)

d)

Domain of definition of the function   for real values of x is

a)

b)

c)

d)

IIT 2003
721

Let λ and α be real. Find the set of all values of λ for which the system of linear equations
 
 
 
has a non-trivial solution. For λ = 1 find the value of α.

Let λ and α be real. Find the set of all values of λ for which the system of linear equations
 
 
 
has a non-trivial solution. For λ = 1 find the value of α.

IIT 1993
722

Let f be a one–one function with domain {x, y, z} and range {1, 2, 3}. It is given that exactly one of the following statements is true and remaining statements are false f (1) = 1, f (y) ≠ 1, f (z) ≠ 2. Determine  

Let f be a one–one function with domain {x, y, z} and range {1, 2, 3}. It is given that exactly one of the following statements is true and remaining statements are false f (1) = 1, f (y) ≠ 1, f (z) ≠ 2. Determine  

IIT 1982
723

The value of . Given that a, x, y, z, b are in Arithmetic Progression while the value of . If a, x, y, z, b are in Harmonic Progression then find a and b.

The value of . Given that a, x, y, z, b are in Arithmetic Progression while the value of . If a, x, y, z, b are in Harmonic Progression then find a and b.

IIT 1978
724

Let {x} and [x] denote the fractional and integral part of a real number x respectively. Solve 4{x} = x + [x]

Let {x} and [x] denote the fractional and integral part of a real number x respectively. Solve 4{x} = x + [x]

IIT 1994
725

If S1, S2, .  .  .  .,Sn are the sums of infinite geometric series whose first terms are 1, 2, 3,   .  .  ., n and whose common ratios are  respectively, then find the value of

If S1, S2, .  .  .  .,Sn are the sums of infinite geometric series whose first terms are 1, 2, 3,   .  .  ., n and whose common ratios are  respectively, then find the value of

IIT 1991

Play Selected  Login to save this search...