|
701 |
is
is
|
IIT 2006 |
|
|
702 |
Suppose for x ≥ . If g(x) is the function whose graph is the reflection of f(x) with respect to the line y = x then g(x) equals a)  b)  c)  d) 
Suppose for x ≥ . If g(x) is the function whose graph is the reflection of f(x) with respect to the line y = x then g(x) equals a)  b)  c)  d) 
|
IIT 2002 |
|
|
703 |
Domain of definition of the function for real values of x is a)  b)  c)  d) 
Domain of definition of the function for real values of x is a)  b)  c)  d) 
|
IIT 2003 |
|
|
704 |
Let λ and α be real. Find the set of all values of λ for which the system of linear equations has a non-trivial solution. For λ = 1 find the value of α.
|
IIT 1993 |
|
|
705 |
Let f be a one–one function with domain {x, y, z} and range {1, 2, 3}. It is given that exactly one of the following statements is true and remaining statements are false f (1) = 1, f (y) ≠ 1, f (z) ≠ 2. Determine
Let f be a one–one function with domain {x, y, z} and range {1, 2, 3}. It is given that exactly one of the following statements is true and remaining statements are false f (1) = 1, f (y) ≠ 1, f (z) ≠ 2. Determine
|
IIT 1982 |
|
|
706 |
The value of . Given that a, x, y, z, b are in Arithmetic Progression while the value of . If a, x, y, z, b are in Harmonic Progression then find a and b.
The value of . Given that a, x, y, z, b are in Arithmetic Progression while the value of . If a, x, y, z, b are in Harmonic Progression then find a and b.
|
IIT 1978 |
|
|
707 |
Let {x} and [x] denote the fractional and integral part of a real number x respectively. Solve 4{x} = x + [x]
Let {x} and [x] denote the fractional and integral part of a real number x respectively. Solve 4{x} = x + [x]
|
IIT 1994 |
|
|
708 |
If S1, S2, . . . .,Sn are the sums of infinite geometric series whose first terms are 1, 2, 3, . . ., n and whose common ratios are respectively, then find the value of 
If S1, S2, . . . .,Sn are the sums of infinite geometric series whose first terms are 1, 2, 3, . . ., n and whose common ratios are respectively, then find the value of 
|
IIT 1991 |
|
|
709 |
If are three non–coplanar vectors, then equals a) 0 b)  c)  d) 
If are three non–coplanar vectors, then equals a) 0 b)  c)  d) 
|
IIT 1995 |
|
|
710 |
Let a, b are real positive numbers. If a, A1, A2, b are in Arithmetic Progression, a, G1, G2, b are in Geometric Progression and a, H1, H2, b are in Harmonic Progression show that 
Let a, b are real positive numbers. If a, A1, A2, b are in Arithmetic Progression, a, G1, G2, b are in Geometric Progression and a, H1, H2, b are in Harmonic Progression show that 
|
IIT 2002 |
|
|
711 |
a) True b) False
a) True b) False
|
IIT 1978 |
|
|
712 |
Multiple choice Let be three vectors. A vector in the plane of b and c whose projection on a is of magnitude is a)  b)  c)  d) 
Multiple choice Let be three vectors. A vector in the plane of b and c whose projection on a is of magnitude is a)  b)  c)  d) 
|
IIT 1993 |
|
|
713 |
Let A be vector parallel to the line of intersection of planes P1 and P2. Plane P1 is parallel to the vectors and and that P2 is parallel to and , then the angle between vector A and a given vector is a)  b)  c)  d) 
|
IIT 2006 |
|
|
714 |
Find the range of values of t for which a) (− , − ) b) ( , ) c) (− , − ) U ( , ) d) (− , )
|
IIT 2005 |
|
|
715 |
A vector A has components A1, A2, A3 in a right handed rectangular cartesian coordinate system OXYZ. The coordinate system is rotated about the X–axis through an angle . Find the components of A in the new co-ordinate system in terms of A1, A2, A3.
A vector A has components A1, A2, A3 in a right handed rectangular cartesian coordinate system OXYZ. The coordinate system is rotated about the X–axis through an angle . Find the components of A in the new co-ordinate system in terms of A1, A2, A3.
|
IIT 1983 |
|
|
716 |
The value of is equal to a)  b)  c)  d) 
The value of is equal to a)  b)  c)  d) 
|
IIT 1991 |
|
|
717 |
In a triangle OAB, E is the midpoint of BO and D is a point on AB such that AD : DB = 2 : 1. If OD and AE intercept at P determine the ratio OP : PD using vector methods.
In a triangle OAB, E is the midpoint of BO and D is a point on AB such that AD : DB = 2 : 1. If OD and AE intercept at P determine the ratio OP : PD using vector methods.
|
IIT 1989 |
|
|
718 |
The position vectors of the vertices A, B, C of a tetrahedron are respectively. The altitude from the vertex D to the opposite face ABC meets the median line through A of the triangle ABC at E. If the length of the side AD is 4 and the volume of the tetrahedron is . Find the position vector of E or all possible positions.
The position vectors of the vertices A, B, C of a tetrahedron are respectively. The altitude from the vertex D to the opposite face ABC meets the median line through A of the triangle ABC at E. If the length of the side AD is 4 and the volume of the tetrahedron is . Find the position vector of E or all possible positions.
|
IIT 1996 |
|
|
719 |
For any two vectors u and v prove that i)  ii) 
For any two vectors u and v prove that i)  ii) 
|
IIT 1998 |
|
|
720 |
True/False If for some non zero vector X then a) True b) False
True/False If for some non zero vector X then a) True b) False
|
IIT 1983 |
|
|
721 |
If then a) True b) False
If then a) True b) False
|
IIT 1979 |
|
|
722 |
Let and where O, A and B are non-collinear points. Let p denote the area of the quadrilateral OABC and let q denote the area of the quadrilateral with OA and OC as adjacent sides. If p = kq then k = . . . . .
Let and where O, A and B are non-collinear points. Let p denote the area of the quadrilateral OABC and let q denote the area of the quadrilateral with OA and OC as adjacent sides. If p = kq then k = . . . . .
|
IIT 1997 |
|
|
723 |
Prove that = 2[cosx + cos3x + cos5x + … + cos(2k−1)x] for any positive integer k. Hence prove that = 
|
IIT 1990 |
|
|
724 |
The function f(x) =|px – q| + r |x|, x ε (− , ) where p > 0, q > 0, r > 0 assumes minimum value on one point if a) p ≠ q b) r = q c) r ≠ p d) r = p = q
The function f(x) =|px – q| + r |x|, x ε (− , ) where p > 0, q > 0, r > 0 assumes minimum value on one point if a) p ≠ q b) r = q c) r ≠ p d) r = p = q
|
IIT 1995 |
|
|
725 |
Let f : R → R be any function defined g : R → R by g (x) = |f (x)| for all x. Then g is a) onto if f is onto b) one to one if f is one to one c) continuous if f is continuous d) differentiable if f is differentiable
Let f : R → R be any function defined g : R → R by g (x) = |f (x)| for all x. Then g is a) onto if f is onto b) one to one if f is one to one c) continuous if f is continuous d) differentiable if f is differentiable
|
IIT 2000 |
|