All BASICSTANDARDADVANCED

Question(s) from Search: IIT

Search Results Difficulty Solution
701

Let the vectors represent the edges of a regular hexagon

Statement 1 -  because

Statement 2 -

a) Statement 1 and 2 are true and Statement 2 is a correct explanation of statement 1.

b) Statement 1 and 2 are true and Statement 2 is not a correct explanation of statement 1.

c) Statement 1 is true. Statement 2 is false.

d) Statement 1 is false. Statement 2 is true.

Let the vectors represent the edges of a regular hexagon

Statement 1 -  because

Statement 2 -

a) Statement 1 and 2 are true and Statement 2 is a correct explanation of statement 1.

b) Statement 1 and 2 are true and Statement 2 is not a correct explanation of statement 1.

c) Statement 1 is true. Statement 2 is false.

d) Statement 1 is false. Statement 2 is true.

IIT 2007
702

Find the smallest possible value of p for which the equation
 

a)

b)

c)

d)

Find the smallest possible value of p for which the equation
 

a)

b)

c)

d)

IIT 1995
703

If f (x) =  for every real x then the minimum value of f

a) does not exist because f is unbounded

b) is not attained even though f is bounded

c) is equal to 1

d) is equal to −1

If f (x) =  for every real x then the minimum value of f

a) does not exist because f is unbounded

b) is not attained even though f is bounded

c) is equal to 1

d) is equal to −1

IIT 1998
704

Find the larger of cos(lnθ) and ln(cosθ) if  < θ < .

a) cos(lnθ)

b) ln(cosθ)

c) Neither is larger throughout the interval

Find the larger of cos(lnθ) and ln(cosθ) if  < θ < .

a) cos(lnθ)

b) ln(cosθ)

c) Neither is larger throughout the interval

IIT 1983
705

If the function f : [ 1,  ) → [ 1,  ) is defined by f (x) = 2x(x – 1) then
f -1(x) is

a)

b)  ()

c)  ()

d)

If the function f : [ 1,  ) → [ 1,  ) is defined by f (x) = 2x(x – 1) then
f -1(x) is

a)

b)  ()

c)  ()

d)

IIT 1999
706

If are in harmonic progression then  …………

a) 1

b)

c)

d)

If are in harmonic progression then  …………

a) 1

b)

c)

d)

IIT 1997
707

If

 

 

then x equals

a)

b) 1

c)

d) –1

If

 

 

then x equals

a)

b) 1

c)

d) –1

IIT 1999
708

Let f ( x ) = , x ≠ 1 then for what value of a is f ( f (x)) = x

a)

b)

c) 1

d) 1

Let f ( x ) = , x ≠ 1 then for what value of a is f ( f (x)) = x

a)

b)

c) 1

d) 1

IIT 2001
709

If f : [ 0,  )  [ 0,  ) and f (x) =  then f is

a) one-one and onto

b) one-one but not onto

c) onto but not one-one

d) neither one-one nor onto

If f : [ 0,  )  [ 0,  ) and f (x) =  then f is

a) one-one and onto

b) one-one but not onto

c) onto but not one-one

d) neither one-one nor onto

IIT 2003
710

Match the following

Let (x, y) be such that

 =

Column 1

Column 2

i) If a=1 and b=0 then (x, y)

A)Lies on the circle
 +=1

ii) If a=1 and b=1 then (x, y)

B)Lies on
(−1)(−1) = 0

iii) If a=1 and b=2 then (x, y)

C)Lies on y = x

iv) If a=2 and b=2 then (x, y)

D)Lies on
(−1)(−1) = 0

Match the following

Let (x, y) be such that

 =

Column 1

Column 2

i) If a=1 and b=0 then (x, y)

A)Lies on the circle
 +=1

ii) If a=1 and b=1 then (x, y)

B)Lies on
(−1)(−1) = 0

iii) If a=1 and b=2 then (x, y)

C)Lies on y = x

iv) If a=2 and b=2 then (x, y)

D)Lies on
(−1)(−1) = 0

IIT 2007
711

f (x) =
and g (x) =
 

a) neither one-one nor onto

b) one-one and onto

c) one-one and into

d) many one and onto

f (x) =
and g (x) =
 

a) neither one-one nor onto

b) one-one and onto

c) one-one and into

d) many one and onto

IIT 2005
712

One angle of an isosceles triangle is 120 and the radius of its incircle = . Then the area of the triangle in square units is

a)

b)

c)

d) 2π

One angle of an isosceles triangle is 120 and the radius of its incircle = . Then the area of the triangle in square units is

a)

b)

c)

d) 2π

IIT 2006
713

The sides of a triangle are three consecutive natural numbers and its largest angle is twice the smallest one. Determine the sides of triangle.

a) 3, 4, 5

b) 4, 5, 6

c) 4, 5, 7

d) 5, 6, 7

The sides of a triangle are three consecutive natural numbers and its largest angle is twice the smallest one. Determine the sides of triangle.

a) 3, 4, 5

b) 4, 5, 6

c) 4, 5, 7

d) 5, 6, 7

IIT 1991
714

A plane which is perpendicular to two planes  and  passes through (1, −2, 1). The distance of the plane from the point (1, 2, 2) is

a) 0

b) 1

c)

d)

A plane which is perpendicular to two planes  and  passes through (1, −2, 1). The distance of the plane from the point (1, 2, 2) is

a) 0

b) 1

c)

d)

IIT 2006
715

Two lines having direction ratios (1, 0, −1) and (1, −1, 0) are parallel to a plane passing through (1, 1, 1). This plane cuts the coordinate axes at A, B, C. Find the value of the tetrahedron OABC.

Two lines having direction ratios (1, 0, −1) and (1, −1, 0) are parallel to a plane passing through (1, 1, 1). This plane cuts the coordinate axes at A, B, C. Find the value of the tetrahedron OABC.

IIT 2004
716

Let a, b, c be real numbers. Then the following system of equations in x, y, z

  + −  = 1

  − +  = 1

 + +  = 1  has

a) No solution

b) Unique solution

c) Infinitely many solutions

d) Finitely many solutions

Let a, b, c be real numbers. Then the following system of equations in x, y, z

  + −  = 1

  − +  = 1

 + +  = 1  has

a) No solution

b) Unique solution

c) Infinitely many solutions

d) Finitely many solutions

IIT 1995
717

Consider the lines

 ;

 
The distance of the point (1, 1, 1) from the plane through the point (−1, −2, −1) and whose normal is perpendicular to both lines L1 and L2 is

a)

b)

c)

d)

Consider the lines

 ;

 
The distance of the point (1, 1, 1) from the plane through the point (−1, −2, −1) and whose normal is perpendicular to both lines L1 and L2 is

a)

b)

c)

d)

IIT 2008
718

The domain of definition of the function  is

a)  excluding  

b) [0, 1] excluding 0.5

c)  excluding x = 0

d) None of these

The domain of definition of the function  is

a)  excluding  

b) [0, 1] excluding 0.5

c)  excluding x = 0

d) None of these

IIT 1983
719

A curve  passes through  and the tangent at  cuts the X-axis and Y-axis at A and B respectively such that then

a) Equation of the curve is

b) Normal at  is

c) Curve passes through

d) Equation of the curve is

A curve  passes through  and the tangent at  cuts the X-axis and Y-axis at A and B respectively such that then

a) Equation of the curve is

b) Normal at  is

c) Curve passes through

d) Equation of the curve is

IIT 2006
720

Let y = f (x) be a curve passing through (1, 1) such that the triangle formed by the coordinate axes and the tangent at any point of the curve lies in the first quadrant and has area 2. Find the differential equation and determine all such possible curves.

Let y = f (x) be a curve passing through (1, 1) such that the triangle formed by the coordinate axes and the tangent at any point of the curve lies in the first quadrant and has area 2. Find the differential equation and determine all such possible curves.

IIT 1995
721

If  
then the two triangles with vertices (x1, y1), (x2, y2), (x3, y3), and (a1, b1), (a2, b2), (a3, b3) must be congruent.

a) True

b) False

If  
then the two triangles with vertices (x1, y1), (x2, y2), (x3, y3), and (a1, b1), (a2, b2), (a3, b3) must be congruent.

a) True

b) False

IIT 1985
722

If  then

a)

b)

c)

d) f and g cannot be determined

If  then

a)

b)

c)

d) f and g cannot be determined

IIT 1998
723

A curve passes through  and slope at the point  is

. Find the equation of the curve and the area between the

curve and the X-axis in the fourth quadrant.

A curve passes through  and slope at the point  is

. Find the equation of the curve and the area between the

curve and the X-axis in the fourth quadrant.

IIT 2004
724

Find the integral solutions of the following system of inequality
 

a) Ø

b) x = 1

c) x = 2

d) x = 3

Find the integral solutions of the following system of inequality
 

a) Ø

b) x = 1

c) x = 2

d) x = 3

IIT 1979
725

Cosine of angle of intersection of curve y = 3x – 1lnx and y = xx – 1 is

Cosine of angle of intersection of curve y = 3x – 1lnx and y = xx – 1 is

IIT 2006

Play Selected  Login to save this search...