All BASICSTANDARDADVANCED

Question(s) from Search: IIT

Search Results Difficulty Solution
601

A cubic f (x) vanishes at x = −2 and has a relative minimum/maximum at x = −1 and . If , find the cube f (x).

a) x3 + x2 + x + 1

b) x3 + x2 − x + 1

c) x3 − x2 + x + 2

d) x3 + x2 − x + 2

A cubic f (x) vanishes at x = −2 and has a relative minimum/maximum at x = −1 and . If , find the cube f (x).

a) x3 + x2 + x + 1

b) x3 + x2 − x + 1

c) x3 − x2 + x + 2

d) x3 + x2 − x + 2

IIT 1992
05:24 min
602

If a circle passes through the points (a, b) and cuts the circle  orthogonally, then the equation of the locus of its centre is

a)

b)

c)

d)

If a circle passes through the points (a, b) and cuts the circle  orthogonally, then the equation of the locus of its centre is

a)

b)

c)

d)

IIT 1988
04:03 min
603

In ΔPQR, angle R . If tan  and tan  are roots of the equation

a)

b)

c)

d)

In ΔPQR, angle R . If tan  and tan  are roots of the equation

a)

b)

c)

d)

IIT 1999
02:23 min
604

Prove that
where  and n is an even integer.

Prove that
where  and n is an even integer.

IIT 1993
09:38 min
605

 equals

a) – π

b) π

c)

d) 1

 equals

a) – π

b) π

c)

d) 1

IIT 2001
03:01 min
606

Evaluate

Evaluate

IIT 1995
09:27 min
607

The locus of the centre of circles which touches externally  and which touches the Y-axis is given by the equation

a)

b)

c)

d)

The locus of the centre of circles which touches externally  and which touches the Y-axis is given by the equation

a)

b)

c)

d)

IIT 1993
04:38 min
608

The values of θ ε (0, 2π) for which  are

a)

b)

c)

d)

The values of θ ε (0, 2π) for which  are

a)

b)

c)

d)

IIT 2006
03:08 min
609

Prove that
 

Prove that
 

IIT 1997
09:29 min
610

Evaluate

a)

b)

c)

d)

Evaluate

a)

b)

c)

d)

IIT 1999
01:51 min
611

A, B, C , D are four points in a plane with position vectors a, b, c, d respectively, such that . The point D then is the  . . . . . . .  of the triangle ABC.

A, B, C , D are four points in a plane with position vectors a, b, c, d respectively, such that . The point D then is the  . . . . . . .  of the triangle ABC.

IIT 1984
02:30 min
612

If   are altitudes of a triangle from the vertices A, B, C and Δ the area of the triangle then  

a) True

b) False

If   are altitudes of a triangle from the vertices A, B, C and Δ the area of the triangle then  

a) True

b) False

IIT 1978
03:23 min
613

The sum of the coefficients of the polynomial (1 + x – 3x2)2163 is

The sum of the coefficients of the polynomial (1 + x – 3x2)2163 is

IIT 1982
01:22 min
614

If  at x = π

a)

b) π

c) 2π

d) 4π

If  at x = π

a)

b) π

c) 2π

d) 4π

IIT 2004
01:14 min
615

If the vectors
 

are coplanar then the value of  . . . . . .

If the vectors
 

are coplanar then the value of  . . . . . .

IIT 1987
04:15 min
616

Let n be a positive integer. If the coefficient of the 2nd, 3rd and 4th terms in the expansion of (1 + x)n are in arithmetic progression then n = …..

Let n be a positive integer. If the coefficient of the 2nd, 3rd and 4th terms in the expansion of (1 + x)n are in arithmetic progression then n = …..

IIT 1994
03:54 min
617

Multiple choices

If x + |y| = 2y, then y as a function of x is

a) Defined for all real x

b) Continuous at x = 0

c) Differentiable for all x

d) Such that  for x < 0

Multiple choices

If x + |y| = 2y, then y as a function of x is

a) Defined for all real x

b) Continuous at x = 0

c) Differentiable for all x

d) Such that  for x < 0

IIT 1984
03:53 min
618

The value of the integral  is equal to a

a) True

b) False

The value of the integral  is equal to a

a) True

b) False

IIT 1988
01:46 min
619

A unit vector coplanar with  and  and perpendicular to  is . . . . .

A unit vector coplanar with  and  and perpendicular to  is . . . . .

IIT 1992
04:49 min
620

The centre of the circle inscribed in the square formed by the lines  and

a) (4, 7)

b) (7, 4)

c) (9, 4)

d) (4, 9)

The centre of the circle inscribed in the square formed by the lines  and

a) (4, 7)

b) (7, 4)

c) (9, 4)

d) (4, 9)

IIT 2003
02:21 min
621

Find the number of solutions of  

a) 0

b) 1

c) 2

d) Infinitely many

Find the number of solutions of  

a) 0

b) 1

c) 2

d) Infinitely many

IIT 1982
02:37 min
622

The domain of definition of the function
y =  +

a) (−3, −2) excluding −2.5

b) [0, 1] excluding 0.5

c) [−2, 1) excluding 0

d) None of these

The domain of definition of the function
y =  +

a) (−3, −2) excluding −2.5

b) [0, 1] excluding 0.5

c) [−2, 1) excluding 0

d) None of these

IIT 1983
01:30 min
623

Multiple choices

Let g(x) be a function defined on  If the area of the equilateral triangle with two of its vertices at (0, 0) and (x, g (x)) is   then the function g (x) is

a)

b)

c)

d)

Multiple choices

Let g(x) be a function defined on  If the area of the equilateral triangle with two of its vertices at (0, 0) and (x, g (x)) is   then the function g (x) is

a)

b)

c)

d)

IIT 1989
02:18 min
624

The value of  is

The value of  is

IIT 1993
08:21 min
625

Ten different letters of an alphabet are given. Words with five letters are formed from the given letters. Then the number of words which have at least one letter repeated is

a) 69760

b) 30240

c) 99748

d) None of these

Ten different letters of an alphabet are given. Words with five letters are formed from the given letters. Then the number of words which have at least one letter repeated is

a) 69760

b) 30240

c) 99748

d) None of these

IIT 1980
04:41 min

Play Selected  Login to save this search...