|
501 |
Prove that there exists no complex number z such that and .
Prove that there exists no complex number z such that and .
|
IIT 2003 |
04:27 min
|
|
502 |
Three normals with slopes are drawn from a point P not on the axis of the parabola . If results in the locus of P being a part of the parabola, find the value of α.
|
IIT 2003 |
05:59 min
|
|
503 |
Find the value of the expression 1.(2−ω)(2− + 2.(3−ω)(3− + … (n−1).(n−ω)(n− where ω is an imaginary cube root of unity. a) n(n−1)( +3n+4) b) n(n+1)( +3n+4) c) n(n−1)( +n+1) d) n(n+1)( +n+1)
|
IIT 1996 |
05:00 min
|
|
504 |
If are positive real numbers whose product is a fixed number c then the minimum value of is a)  b)  c)  d) 
If are positive real numbers whose product is a fixed number c then the minimum value of is a)  b)  c)  d) 
|
IIT 2002 |
02:06 min
|
|
505 |
If three complex numbers are in arithmetic progression then they lie on a circle in the complex plane. a) True b) False
If three complex numbers are in arithmetic progression then they lie on a circle in the complex plane. a) True b) False
|
IIT 1985 |
01:13 min
|
|
506 |
A solution of the differential equation is a) y = 2 b) y = 2x c)  d) 2
A solution of the differential equation is a) y = 2 b) y = 2x c)  d) 2
|
IIT 1999 |
01:47 min
|
|
507 |
For all x, then the interval in which a lies is a) a <  b)  c)  d) 
For all x, then the interval in which a lies is a) a <  b)  c)  d) 
|
IIT 2004 |
01:45 min
|
|
508 |
Let the three digit numbers A28, 3B9 and 62C where A, B, C are integers between 0 and 9, be divisible by a fixed number k. Show that the determinant is divisible by k.
Let the three digit numbers A28, 3B9 and 62C where A, B, C are integers between 0 and 9, be divisible by a fixed number k. Show that the determinant is divisible by k.
|
IIT 1990 |
04:45 min
|
|
509 |
If a and b are real numbers between 0 and 1 such that the points form an equilateral triangle then a is equal to . . . . a)  b)  c)  d) 
If a and b are real numbers between 0 and 1 such that the points form an equilateral triangle then a is equal to . . . . a)  b)  c)  d) 
|
IIT 1989 |
03:07 min
|
|
510 |
Let E be the ellipse and C be the circle . Let P and Q be the points (1, 2) and (2, 1) respectively. Then a) Q lies inside C but outside E b) Q lies outside both C and E c) P lies inside both C and E d) P lies inside C but outside E
Let E be the ellipse and C be the circle . Let P and Q be the points (1, 2) and (2, 1) respectively. Then a) Q lies inside C but outside E b) Q lies outside both C and E c) P lies inside both C and E d) P lies inside C but outside E
|
IIT 1994 |
04:15 min
|
|
511 |
Let a, b, c be the sides of a triangle where a ≠ c and λ ε R. If roots of the equation are real then a)  b)  c)  d) 
Let a, b, c be the sides of a triangle where a ≠ c and λ ε R. If roots of the equation are real then a)  b)  c)  d) 
|
IIT 2006 |
04:47 min
|
|
512 |
Find the value of the determinant  where a, b, c are respectively pth, qth and rth term of a harmonic progression. a) 0 b) 1 c) ½ d) None of the above
Find the value of the determinant  where a, b, c are respectively pth, qth and rth term of a harmonic progression. a) 0 b) 1 c) ½ d) None of the above
|
IIT 1997 |
04:23 min
|
|
513 |
If tangents are drawn to the ellipse then the locus of the mid-points of the intercepts made by the tangents between the coordinate axes is a)  b)  c)  d) 
If tangents are drawn to the ellipse then the locus of the mid-points of the intercepts made by the tangents between the coordinate axes is a)  b)  c)  d) 
|
IIT 2004 |
03:11 min
|
|
514 |
Let S is the set of all real x, such that is positive, then S contains a)  b)  c)  d) 
Let S is the set of all real x, such that is positive, then S contains a)  b)  c)  d) 
|
IIT 1986 |
04:28 min
|
|
515 |
Let pλ4 + qλ3 + rλ2 + sλ + t = be an identity in λ where p, q, r, s, t are constants. Find the value of t. a) 0 b) +1 c) –1 d) ±1
Let pλ4 + qλ3 + rλ2 + sλ + t = be an identity in λ where p, q, r, s, t are constants. Find the value of t. a) 0 b) +1 c) –1 d) ±1
|
IIT 1981 |
02:38 min
|
|
516 |
Let P be a variable point on the ellipse with foci F1 and F2. . If A is the area of then the maximum value of A is . . . . .
Let P be a variable point on the ellipse with foci F1 and F2. . If A is the area of then the maximum value of A is . . . . .
|
IIT 1994 |
02:27 min
|
|
517 |
A spherical rain drop evaporates at a rate proportional to its surface area at any instant. The differential equation giving the rate of change of the radius vector of the rain drop is . . . . .
A spherical rain drop evaporates at a rate proportional to its surface area at any instant. The differential equation giving the rate of change of the radius vector of the rain drop is . . . . .
|
IIT 1997 |
01:37 min
|
|
518 |
The value of the determinant is ………… a) 0 b) 1 c) a2 + b2 + c2 – abc d) a2 + b2 + c2 – 3abc
The value of the determinant is ………… a) 0 b) 1 c) a2 + b2 + c2 – abc d) a2 + b2 + c2 – 3abc
|
IIT 1988 |
02:49 min
|
|
519 |
The equation represents a) An ellipse b) A hyperbola c) A circle d) None of these
The equation represents a) An ellipse b) A hyperbola c) A circle d) None of these
|
IIT 1981 |
01:03 min
|
|
520 |
Find all the real values of x which satisfy and .
Find all the real values of x which satisfy and .
|
IIT 1983 |
02:29 min
|
|
521 |
If the line touches the hyperbola then the point of contact is a)  b)  c)  d) 
If the line touches the hyperbola then the point of contact is a)  b)  c)  d) 
|
IIT 2004 |
02:39 min
|
|
522 |
Let then one of the possible value of k is a) 1 b) 2 c) 4 d) 16
Let then one of the possible value of k is a) 1 b) 2 c) 4 d) 16
|
IIT 1997 |
02:15 min
|
|
523 |
Two events A and B have probabilities 0.25 and 0.50 respectively. The possibility of both A and B occur simultaneously is 0.14 then the probability that neither A nor B occur is a) 0.39 b) 0.25 c) 0.11 d) None of these
Two events A and B have probabilities 0.25 and 0.50 respectively. The possibility of both A and B occur simultaneously is 0.14 then the probability that neither A nor B occur is a) 0.39 b) 0.25 c) 0.11 d) None of these
|
IIT 1980 |
02:08 min
|
|
524 |
Find the set of all x for which 
Find the set of all x for which 
|
IIT 1987 |
05:05 min
|
|
525 |
Sum of the first n terms of the series is a) 2n – n – 1 b) 1 – 2− n c) n + 2− n – 1 d) 2n + 1
Sum of the first n terms of the series is a) 2n – n – 1 b) 1 – 2− n c) n + 2− n – 1 d) 2n + 1
|
IIT 1988 |
03:20 min
|