All BASICSTANDARDADVANCED

Question(s) from Search: IIT

Search Results Difficulty Solution
326

If one of the diameters of the circle  is a chord to the circle with centre (2, 1) then the radius of the circle is

a)

b)

c) 3

d) 2

If one of the diameters of the circle  is a chord to the circle with centre (2, 1) then the radius of the circle is

a)

b)

c) 3

d) 2

IIT 2004
02:47 min
327

Which of the following functions is periodic?

a) f(x) = x – [x] where [x] denotes the greatest integer less than or equal to the real number x

b) f(x) = sin  x ≠ 0, f(0) = 0

c) f(x) = x cos x

d) None of these

Which of the following functions is periodic?

a) f(x) = x – [x] where [x] denotes the greatest integer less than or equal to the real number x

b) f(x) = sin  x ≠ 0, f(0) = 0

c) f(x) = x cos x

d) None of these

IIT 1983
01:19 min
328

 

a)

b)

c) 1

d) 2

 

a)

b)

c) 1

d) 2

IIT 1994
01:46 min
329

Let a, b and c be three vectors having magnitudes 1, 1 and 2 respectively. If  then the acute angle between a and c is  .  .  .  .  .

Let a, b and c be three vectors having magnitudes 1, 1 and 2 respectively. If  then the acute angle between a and c is  .  .  .  .  .

IIT 1997
04:42 min
330

The equation of the tangents drawn from the origin to the circle  are

a) x= 6

b) y = 0

c)

d)

The equation of the tangents drawn from the origin to the circle  are

a) x= 6

b) y = 0

c)

d)

IIT 1988
04:06 min
331

Let f (x) be defined for all x > 0 and be continuous. If f (x) satisfies
f  = f (x) – f (y) for all x and y and f (e) = 1 then

a) f (x) is bounded

b) f  → 0 as x → 0

c) x f  → 0 as x → 0

d) f (x) = lnx

Let f (x) be defined for all x > 0 and be continuous. If f (x) satisfies
f  = f (x) – f (y) for all x and y and f (e) = 1 then

a) f (x) is bounded

b) f  → 0 as x → 0

c) x f  → 0 as x → 0

d) f (x) = lnx

IIT 1995
02:06 min
332

The value of  is equal to

a)

b)

c)

d) None of these

The value of  is equal to

a)

b)

c)

d) None of these

IIT 1980
03:48 min
333

The area bounded by the curve y = f(x), the X–axis and the ordinate x = 1 and x = b is (b – 1) sin (3b + 4). Then f(x) is

a) (x – 1) cos (3x + 4)

b) sin(3x + 4)

c) sin(3x + 4) + 3(x – 1) cos (3x + 4)

d) none of these

 

The area bounded by the curve y = f(x), the X–axis and the ordinate x = 1 and x = b is (b – 1) sin (3b + 4). Then f(x) is

a) (x – 1) cos (3x + 4)

b) sin(3x + 4)

c) sin(3x + 4) + 3(x – 1) cos (3x + 4)

d) none of these

 

IIT 1983
01:13 min
334

Through a fixed point (h, k) secants are drawn to the circle  . Show that the locus of the mid points of the secant intercepted by the circle is

Through a fixed point (h, k) secants are drawn to the circle  . Show that the locus of the mid points of the secant intercepted by the circle is

IIT 1983
02:28 min
335

There exists a solution of θ between 0 and 2π that satisfies the equation .

a) True

b) False

There exists a solution of θ between 0 and 2π that satisfies the equation .

a) True

b) False

IIT 1980
02:16 min
336

The number of values of x where the function
f (x) = cos x + cos () attains the maximum is

a) 0

b) 1

c) 2

d) Infinite

The number of values of x where the function
f (x) = cos x + cos () attains the maximum is

a) 0

b) 1

c) 2

d) Infinite

IIT 1998
01:38 min
337

Evaluate

a) 0

b)

c) 1

d) 2

Evaluate

a) 0

b)

c) 1

d) 2

IIT 1979
00:54 min
338

The circle  is inscribed in a triangle which has two of its sides along the co-ordinate axes. The locus of the circum centre of the triangle is  find k.

The circle  is inscribed in a triangle which has two of its sides along the co-ordinate axes. The locus of the circum centre of the triangle is  find k.

IIT 1987
07:11 min
339

The domain of definition of the function f (x) given by the equation

2x + 2y = 2 is

a) 0 < x ≤ 1

b) 0 ≤ x ≤ 1

c)  < x ≤ 0

d)  < x ≤ 1

The domain of definition of the function f (x) given by the equation

2x + 2y = 2 is

a) 0 < x ≤ 1

b) 0 ≤ x ≤ 1

c)  < x ≤ 0

d)  < x ≤ 1

IIT 2000
01:23 min
340

Determine the values of a, b, c for which the function

 

is continuous at x = 0

a)

b)

c)

d)

Determine the values of a, b, c for which the function

 

is continuous at x = 0

a)

b)

c)

d)

IIT 1982
04:00 min
341

If

a)

b) [2, ∞)

c)

d)

If

a)

b) [2, ∞)

c)

d)

IIT 2002
06:15 min
342

The function  is

a) Increasing on (0, ∞)

b) Decreasing on (0, ∞)

c) Increasing on  and decreasing on  

d) Increasing on  and decreasing on

The function  is

a) Increasing on (0, ∞)

b) Decreasing on (0, ∞)

c) Increasing on  and decreasing on  

d) Increasing on  and decreasing on

IIT 1995
02:10 min
343

A point P is given on the circumference of a circle of radius r. Chord QR is parallel to the tangent at P. Determine the maximum possible area of ΔPQR.

A point P is given on the circumference of a circle of radius r. Chord QR is parallel to the tangent at P. Determine the maximum possible area of ΔPQR.

IIT 1990
08:40 min
344

If we consider only the principal values of the inverse trigonometric functions then the value of

 is

a)

b)

c)

d)

If we consider only the principal values of the inverse trigonometric functions then the value of

 is

a)

b)

c)

d)

IIT 1994
02:29 min
345

Let g (x) = 1 + x – [ x ] and f (x) =  then for all x,
f (g (x)) is equal to

a) x

b) 1

c) f ( x )

d) g ( x )

Let g (x) = 1 + x – [ x ] and f (x) =  then for all x,
f (g (x)) is equal to

a) x

b) 1

c) f ( x )

d) g ( x )

IIT 2001
01:01 min
346

If , then find the values of n and r

If , then find the values of n and r

IIT 1979
04:28 min
347

The function  increases if

a)

b)

c)

d)

The function  increases if

a)

b)

c)

d)

IIT 1999
02:02 min
348

a) True

b) False

a) True

b) False

IIT 2002
02:39 min
349

The triangle formed by the tangent to the curve

  at (1, 1) and the coordinate axes, lies in the first quadrant if its area is 2. Then the value of b is

a) – 1

b) 3

c) – 3

d) 1

The triangle formed by the tangent to the curve

  at (1, 1) and the coordinate axes, lies in the first quadrant if its area is 2. Then the value of b is

a) – 1

b) 3

c) – 3

d) 1

IIT 2001
03:51 min
350

Consider a curve and a point P not on the curve. A line drawn from the point P intersects the curve at points Q and R. If PQ.QR is independent of the slope of the line then show that the curve is a circle.

Consider a curve and a point P not on the curve. A line drawn from the point P intersects the curve at points Q and R. If PQ.QR is independent of the slope of the line then show that the curve is a circle.

IIT 1997
07:57 min

Play Selected  Login to save this search...