All BASICSTANDARDADVANCED

Question(s) from Search: IIT

Search Results Difficulty Solution
326

A circle passes through the point of intersection of the coordinate axes with the lines  and x , then λ = . . . . .

A circle passes through the point of intersection of the coordinate axes with the lines  and x , then λ = . . . . .

IIT 1991
04:24 min
327

If x, y, z are real and distinct then
8u =
is always

a) Non–negative

b) Non–positive

c) Zero

d) None of these

If x, y, z are real and distinct then
8u =
is always

a) Non–negative

b) Non–positive

c) Zero

d) None of these

IIT 1979
02:14 min
328

 

a) 0

b) 1

c) e

d) e2

 

a) 0

b) 1

c) e

d) e2

IIT 1996
01:19 min
329

Show that   for all x ≥ 0.

Show that   for all x ≥ 0.

IIT 1983
04:21 min
330

For each natural number k, let Ck denote the circle with radius k centimeters and center at the origin. On the circle Ck, a particle moves k centimeters in the counterclockwise direction. After completing its motion on Ck the particle moves to Ck + 1 in the radial direction. The motion of the particle continues in this manner. The particle starts at ( 1, 0 ). If the particle crosses the positive direction of the X–axis for the first time on the circle Cn then n = . . . . .

For each natural number k, let Ck denote the circle with radius k centimeters and center at the origin. On the circle Ck, a particle moves k centimeters in the counterclockwise direction. After completing its motion on Ck the particle moves to Ck + 1 in the radial direction. The motion of the particle continues in this manner. The particle starts at ( 1, 0 ). If the particle crosses the positive direction of the X–axis for the first time on the circle Cn then n = . . . . .

IIT 1997
04:26 min
331

If  are any real numbers and n is any positive integer then

a)

b)

c)

d) none of these

If  are any real numbers and n is any positive integer then

a)

b)

c)

d) none of these

IIT 1982
01:04 min
332

If |z| = 1 and z ≠ ±1 then the value of  lie on

a) a line not passing through the origin

b)

c) the X – axis

d) the Y axis

If |z| = 1 and z ≠ ±1 then the value of  lie on

a) a line not passing through the origin

b)

c) the X – axis

d) the Y axis

IIT 2007
02:46 min
333

Let a + b + c = 0, then the quadratic equation  has

a) at least one root in (0, 1)

b) one root in (2, 3) and the other in

c) imaginary roots

d) none of these

Let a + b + c = 0, then the quadratic equation  has

a) at least one root in (0, 1)

b) one root in (2, 3) and the other in

c) imaginary roots

d) none of these

IIT 1983
02:32 min
334

If x = a + b, y = aα + bβ, z = aβ + bα where α, β are cube roots of unity show that .

If x = a + b, y = aα + bβ, z = aβ + bα where α, β are cube roots of unity show that .

IIT 1979
02:39 min
335

If  is a normal to  then k is

a) 3

b) 9

c) – 9

d) – 3

If  is a normal to  then k is

a) 3

b) 9

c) – 9

d) – 3

IIT 2000
02:47 min
336

If α and β are roots of  and  are roots of  then the equation  has always

a) Two real roots

b) Two positive roots

c) Two negative roots

d) One positive and one negative root

If α and β are roots of  and  are roots of  then the equation  has always

a) Two real roots

b) Two positive roots

c) Two negative roots

d) One positive and one negative root

IIT 1989
04:41 min
337

The number of points of intersection of the two curves y = 2sinx and y =  is

a) 0

b) 1

c) 2

d)

The number of points of intersection of the two curves y = 2sinx and y =  is

a) 0

b) 1

c) 2

d)

IIT 1994
01:51 min
338

If the system of equations

x – ky – z = 0

kx – y –z = 0

x + y –z = 0

has a non zero solution then possible values of k are

a) −1, 2

b) 1, 2

c) 0, 1

d) −1, 1

If the system of equations

x – ky – z = 0

kx – y –z = 0

x + y –z = 0

has a non zero solution then possible values of k are

a) −1, 2

b) 1, 2

c) 0, 1

d) −1, 1

IIT 2000
02:26 min
339

The axis of the parabola is along the line  and the distance of the vertex and focus from origin are  and  respectively. If vertex and focus both lie in the first quadrant, then the equation of the parabola is

a)

b)

c)

d)

The axis of the parabola is along the line  and the distance of the vertex and focus from origin are  and  respectively. If vertex and focus both lie in the first quadrant, then the equation of the parabola is

a)

b)

c)

d)

IIT 2006
05:21 min
340

The roots of the equation  are real and less than 3, then

a) a < 2

b) 2 < a < 3

c) 3 ≤ a ≤ 4

d) a > 4

The roots of the equation  are real and less than 3, then

a) a < 2

b) 2 < a < 3

c) 3 ≤ a ≤ 4

d) a > 4

IIT 1999
02:39 min
341

Given 2x – y – z = 2, x – 2y + z = − 4, x + y + λz = 4 then the value of λ such that the given system of equations has no solution is

a) 3

b) −2

c) 0

d) −3

Given 2x – y – z = 2, x – 2y + z = − 4, x + y + λz = 4 then the value of λ such that the given system of equations has no solution is

a) 3

b) −2

c) 0

d) −3

IIT 2004
03:35 min
342

Find all non zero complex numbers satisfying .

Find all non zero complex numbers satisfying .

IIT 1996
04:39 min
343

Sketch the region bounded by the curves y = x2 and  . Find the area.

a)

b)

c)

d)

Sketch the region bounded by the curves y = x2 and  . Find the area.

a)

b)

c)

d)

IIT 1992
06:17 min
344

Find the equation of the normal to the curve  which passes through the point (1, 2).

Find the equation of the normal to the curve  which passes through the point (1, 2).

IIT 1984
03:23 min
345

(Multiple choices)
The determinant
  is equal to zero if

a) a, b, c are in arithmetic progression

b) a, b, c are in geometric progression

c) a, b, c are in harmonic progression

d) α is a root of the equation ax2 + bx + c = 0

e) x – α is a factor of ax2 + 2bx + c

(Multiple choices)
The determinant
  is equal to zero if

a) a, b, c are in arithmetic progression

b) a, b, c are in geometric progression

c) a, b, c are in harmonic progression

d) α is a root of the equation ax2 + bx + c = 0

e) x – α is a factor of ax2 + 2bx + c

IIT 1986
03:09 min
346

Let f(x) =  and m(b) be the minimum value of f(x). As b varies, range of m(b) is

a)

b) [ 0,

c) [

d)

Let f(x) =  and m(b) be the minimum value of f(x). As b varies, range of m(b) is

a)

b) [ 0,

c) [

d)

IIT 2001
03:22 min
347

At any point P on the parabola  , a tangent is drawn which meets the directrix at Q. Find the locus of the point R which divides QP externally in the ratio  .

At any point P on the parabola  , a tangent is drawn which meets the directrix at Q. Find the locus of the point R which divides QP externally in the ratio  .

IIT 2004
06:48 min
348

The set of all real numbers x for which  is

a)

b)

c)

d)

The set of all real numbers x for which  is

a)

b)

c)

d)

IIT 2002
03:01 min
349

If the expression  is real then the set of all possible values of x is .  .  .  .

a) x = 2nπ or mπ + π/4

b) x = nπ or mπ + π/4

c) x = 2nπ or 2mπ + π/4

d) x = nπ or 2mπ + π/4

If the expression  is real then the set of all possible values of x is .  .  .  .

a) x = 2nπ or mπ + π/4

b) x = nπ or mπ + π/4

c) x = 2nπ or 2mπ + π/4

d) x = nπ or 2mπ + π/4

IIT 1987
06:12 min
350

(Assertion and reason)

The question contains statement – 1 (assertion) and statement 2 (reason). Of these statements mark correct choice if

a) Statement 1 and 2 are true. Statement 2 is a correct explanation for statement 1.

b) Statement 1 and 2 are true. Statement 2 is not a correct explanation for statement 1.

c) Statement 1 is true. Statement 2 is false.

d) Statement 1 is false. Statement 2 is true

Statement 1 – The curve  is symmetric with respect to the line x = 1

Statement 2 – The parabola is symmetric about its axis.

(Assertion and reason)

The question contains statement – 1 (assertion) and statement 2 (reason). Of these statements mark correct choice if

a) Statement 1 and 2 are true. Statement 2 is a correct explanation for statement 1.

b) Statement 1 and 2 are true. Statement 2 is not a correct explanation for statement 1.

c) Statement 1 is true. Statement 2 is false.

d) Statement 1 is false. Statement 2 is true

Statement 1 – The curve  is symmetric with respect to the line x = 1

Statement 2 – The parabola is symmetric about its axis.

IIT 2007
01:47 min

Play Selected  Login to save this search...