All BASICSTANDARDADVANCED

Question(s) from Search: IIT

Search Results Difficulty Solution
251

If f (x) = |x – 2| and g (x) =  then  for x > 20

a) 0

b) 1

c) 2

d) 4

If f (x) = |x – 2| and g (x) =  then  for x > 20

a) 0

b) 1

c) 2

d) 4

IIT 1990
01:14 min
252

The value of the integral  is

a)

b)

c)

d)

The value of the integral  is

a)

b)

c)

d)

IIT 2004
02:02 min
253

If tan A  then

a) True

b) False

If tan A  then

a) True

b) False

IIT 1980
01:00 min
254

For a real y, let [y] denote the greatest integer less than or equal to y. Then the function  is

a) Discontinuous at some x

b) Continuous at all x but the derivative  does not exist for some x

c)  exists for all x but the derivative  does not exist for some x

d)  exists for all x

For a real y, let [y] denote the greatest integer less than or equal to y. Then the function  is

a) Discontinuous at some x

b) Continuous at all x but the derivative  does not exist for some x

c)  exists for all x but the derivative  does not exist for some x

d)  exists for all x

IIT 1981
02:16 min
255

Show that

Show that

IIT 1981
01:28 min
256

The position vectors of the point A, B, C, D are  respectively. If the points A, B, C and D lie in a plane, find the value of λ.

The position vectors of the point A, B, C, D are  respectively. If the points A, B, C and D lie in a plane, find the value of λ.

IIT 1986
03:41 min
257

If k =  then the numerical value of k is ……….

a)

b)

c)

d)

If k =  then the numerical value of k is ……….

a)

b)

c)

d)

IIT 1993
02:32 min
258

If f (a) =  then the value of  is

a) – 5

b)

c) 5

d) None of these

If f (a) =  then the value of  is

a) – 5

b)

c) 5

d) None of these

IIT 1983
01:55 min
259

Evaluate

a)

b)

c)

d)

Evaluate

a)

b)

c)

d)

IIT 1983
05:32 min
260

Let A = . Determine a vector R satisfying  and .

Let A = . Determine a vector R satisfying  and .

IIT 1990
03:53 min
261

If a, b, c are in Arithmetic Progression then the straight line
 will pass through a fixed point whose coordinates are  . . . . .

If a, b, c are in Arithmetic Progression then the straight line
 will pass through a fixed point whose coordinates are  . . . . .

IIT 1984
01:35 min
262

If  then

tan

a) True

b) False

If  then

tan

a) True

b) False

IIT 1979
01:42 min
263

Evaluate

a)

b)

c)

d)

Evaluate

a)

b)

c)

d)

IIT 1985
04:33 min
264

Let C be the curve  . If H is the set of points on the curve C when the tangent is horizontal and v be the set of all points on the curve C when the tangent is vertical then H  =  . . . . .  and v = . . . . .

Let C be the curve  . If H is the set of points on the curve C when the tangent is horizontal and v be the set of all points on the curve C when the tangent is vertical then H  =  . . . . .  and v = . . . . .

IIT 1994
04:09 min
265

In a triangle ABC, angle A is greater than angle B. If the measures of angle A and B satisfy the equation , then the measure of angle C is

a)

b)

c)

d)

In a triangle ABC, angle A is greater than angle B. If the measures of angle A and B satisfy the equation , then the measure of angle C is

a)

b)

c)

d)

IIT 1990
01:43 min
266

Prove that C0 – 22C1 + 32C2 − .  .  .  + (−)n  (n + 1)2 Cn = 0 for n > 2 where

Prove that C0 – 22C1 + 32C2 − .  .  .  + (−)n  (n + 1)2 Cn = 0 for n > 2 where

IIT 1989
05:31 min
267

Show that

Show that

IIT 1990
05:42 min
268

The centre of the circle passing through (0, 1) and touching the curve  at (2, 4) is

a)

b)

c)

d) None of these

The centre of the circle passing through (0, 1) and touching the curve  at (2, 4) is

a)

b)

c)

d) None of these

IIT 1983
07:23 min
269

Determine a positive integer n ≤ 5 such that .

a) 1

b) 2

c) 3

d) 4

Determine a positive integer n ≤ 5 such that .

a) 1

b) 2

c) 3

d) 4

IIT 1992
04:02 min
270

If a, b, c, d are distinct vectors satisfying relation  and . Prove that

If a, b, c, d are distinct vectors satisfying relation  and . Prove that

IIT 2004
02:40 min
271

If two circles  and  intersect in two distinct points, then

a) 2 < r < 8

b) r < 2

c) r = 2

d) r > 2

If two circles  and  intersect in two distinct points, then

a) 2 < r < 8

b) r < 2

c) r = 2

d) r > 2

IIT 1989
04:34 min
272

The maximum value of cos1 cos2 cos3 …… cosnunder the restriction 0  1 , 2 , 3 …. , n   and cot1 cot2 cot3 …… cotn= 1 is

a)

b)

c)

d)

The maximum value of cos1 cos2 cos3 …… cosnunder the restriction 0  1 , 2 , 3 …. , n   and cot1 cot2 cot3 …… cotn= 1 is

a)

b)

c)

d)

IIT 2001
03:43 min
273

The left hand derivative of f (x) = [x] sinπx at k, k an integer is

a) (k – 1)π

b) (k – 1)π

c)

d)  kπ

The left hand derivative of f (x) = [x] sinπx at k, k an integer is

a) (k – 1)π

b) (k – 1)π

c)

d)  kπ

IIT 2001
03:56 min
274

Determine the value of

a)

b)

c)

d)

Determine the value of

a)

b)

c)

d)

IIT 1997
06:07 min
275

Let f : ℝ → ℝ be such that f (1) = 3 and  then

 equals

a) 1

b)

c)

d)

Let f : ℝ → ℝ be such that f (1) = 3 and  then

 equals

a) 1

b)

c)

d)

IIT 2002
02:57 min

Play Selected  Login to save this search...