All BASICSTANDARDADVANCED

Question(s) from Search: IIT

Search Results Difficulty Solution
1026

Find the interval in which ‘a’ lies for which the line y + x = 0 bisects the chord drawn from the point  to the circle

Find the interval in which ‘a’ lies for which the line y + x = 0 bisects the chord drawn from the point  to the circle

IIT 1996
1027

The points on the curve   where the tangent is vertical, is (are)

a)

b)

c)

d)

The points on the curve   where the tangent is vertical, is (are)

a)

b)

c)

d)

IIT 2002
1028

Let T1, T2 be two tangents drawn from (−2, 0) onto the circle C: x2 + y2 = 1. Determine the circle touching C and having T1, T2 as their pair of tangents. Further find the equation of all possible common tangents to the circles, when taken two at a time.

Let T1, T2 be two tangents drawn from (−2, 0) onto the circle C: x2 + y2 = 1. Determine the circle touching C and having T1, T2 as their pair of tangents. Further find the equation of all possible common tangents to the circles, when taken two at a time.

IIT 1999
1029

If α, β are roots of  and γ, δ are roots of  then evaluate  in terms of p, q, r, s.

If α, β are roots of  and γ, δ are roots of  then evaluate  in terms of p, q, r, s.

IIT 1979
1030

For what values of m does the system of equations 3x + my = m, 2x – 5y = 20 have solutions satisfying x > 0, y > 0?

a) m ε (

b) m ε (

c) m ε ( ∪ (

d) m ε (

For what values of m does the system of equations 3x + my = m, 2x – 5y = 20 have solutions satisfying x > 0, y > 0?

a) m ε (

b) m ε (

c) m ε ( ∪ (

d) m ε (

IIT 1980
1031

Find the centre and radius of the circle formed by all the points represented by  satisfying the relation  where α and β are complex numbers given by
 

Find the centre and radius of the circle formed by all the points represented by  satisfying the relation  where α and β are complex numbers given by
 

IIT 2004
1032

Three circles of radii 3, 4 and 5 units touch each other externally and tangents drawn at the points of contact intersect at P. Find the distance between P and the point of contact.

Three circles of radii 3, 4 and 5 units touch each other externally and tangents drawn at the points of contact intersect at P. Find the distance between P and the point of contact.

IIT 2005
1033

 

a) ln2

b) ln3

c) ln6

d) ln2 ln3

 

a) ln2

b) ln3

c) ln6

d) ln2 ln3

IIT 1980
1034

Use the function  , x > 0 to determine the bigger of the numbers eπ and πe.

a) eπ

b) πe

Use the function  , x > 0 to determine the bigger of the numbers eπ and πe.

a) eπ

b) πe

IIT 1981
1035

Find the area of the region bounded by the X–axis and the curve defined by
 
 

a) ln2

b) 2ln2

c)

d)

Find the area of the region bounded by the X–axis and the curve defined by
 
 

a) ln2

b) 2ln2

c)

d)

IIT 1984
1036

Let ABCD be a square with side of length 2 units. C2 is the circle through the vertices A, B, C, D and C1 is the circle touching all the sides of the square ABCD. L is a line through A.

A circle touching the line L and the circle C1 externally such that both the circles are on the same side of the line, then the locus of the centre of circle is

a) Ellipse

b) Hyperbola

c) Parabola

d) Pair of straight lines

Let ABCD be a square with side of length 2 units. C2 is the circle through the vertices A, B, C, D and C1 is the circle touching all the sides of the square ABCD. L is a line through A.

A circle touching the line L and the circle C1 externally such that both the circles are on the same side of the line, then the locus of the centre of circle is

a) Ellipse

b) Hyperbola

c) Parabola

d) Pair of straight lines

IIT 2006
1037

Let f(x) = x3 – x2 + x + 1 and
 
Discuss the continuity and differentiability of f(x) in the interval (0, 2)

a) Continuous and differentiable in (0, 2)

b) Continuous and differentiable in (0, 2)except x = 1

c) Continuous in (0, 2). Differentiable in (0, 2) except x = 1

d) None of the above

Let f(x) = x3 – x2 + x + 1 and
 
Discuss the continuity and differentiability of f(x) in the interval (0, 2)

a) Continuous and differentiable in (0, 2)

b) Continuous and differentiable in (0, 2)except x = 1

c) Continuous in (0, 2). Differentiable in (0, 2) except x = 1

d) None of the above

IIT 1985
1038

Find the point on the curve 4x2 + a2y2 = 4a2, 4 < a2 < 8 that is farthest from the point (0, −2).

a) (a, 0)

b)

c)

d) (0, - 2)

Find the point on the curve 4x2 + a2y2 = 4a2, 4 < a2 < 8 that is farthest from the point (0, −2).

a) (a, 0)

b)

c)

d) (0, - 2)

IIT 1987
1039

The locus of the mid-point of the line segment joining the focus to a moving point on the parabola y2 = 4ax is another parabola with directrix

a) x = −a

b)

c)

d)

The locus of the mid-point of the line segment joining the focus to a moving point on the parabola y2 = 4ax is another parabola with directrix

a) x = −a

b)

c)

d)

IIT 2002
1040

Match the following
Let  

Column 1

Column 2

i) If  then f (x) satisfies

A)  

ii) If  then f (x) satisfies

B)

iii) If  then f (x) satisfies

C)

iv) If then f (x) satisfies

D)

                                                                     

Match the following
Let  

Column 1

Column 2

i) If  then f (x) satisfies

A)  

ii) If  then f (x) satisfies

B)

iii) If  then f (x) satisfies

C)

iv) If then f (x) satisfies

D)

                                                                     

IIT 2007
1041

Let p be the first of the n Arithmetic Means between two numbers and q be the first of n Harmonic Means between the same numbers. Then show that q does not lie between p and

Let p be the first of the n Arithmetic Means between two numbers and q be the first of n Harmonic Means between the same numbers. Then show that q does not lie between p and

IIT 1991
1042

Find all maximum and minimum of the curve y = x(x – 1)2, 0 ≤ x ≤ 2. Also find the area bounded by the curve y = x(x – 2)2, the Y–axis and the line y = 2.

a) Local minimum at x = 1, Local maximum at x = , Area =

b) Local minimum at x = , Local maximum at x =1, Area =

c) Local minimum at x = 2, Local maximum at x = , Area =

d) Local minimum at x = , Local maximum at x =2, Area =

Find all maximum and minimum of the curve y = x(x – 1)2, 0 ≤ x ≤ 2. Also find the area bounded by the curve y = x(x – 2)2, the Y–axis and the line y = 2.

a) Local minimum at x = 1, Local maximum at x = , Area =

b) Local minimum at x = , Local maximum at x =1, Area =

c) Local minimum at x = 2, Local maximum at x = , Area =

d) Local minimum at x = , Local maximum at x =2, Area =

IIT 1989
1043

The curve y = ax3 + bx2 + cx + 5 touches the X – axis at (− 2, 0) and cuts the Y–axis at a point Q where the gradient is 3. Find a, b, c.

a)

b)

c)

d)

The curve y = ax3 + bx2 + cx + 5 touches the X – axis at (− 2, 0) and cuts the Y–axis at a point Q where the gradient is 3. Find a, b, c.

a)

b)

c)

d)

IIT 1994
1044

Points A, B, C lie on the parabola . The tangents to the parabola at A, B, C taken in pair intersect at the points P, Q, R. Determine the ratios of the areas of ΔABC and ΔPQR.

Points A, B, C lie on the parabola . The tangents to the parabola at A, B, C taken in pair intersect at the points P, Q, R. Determine the ratios of the areas of ΔABC and ΔPQR.

IIT 1996
1045

Let a line passing through the fixed point (h, k) cut the X–axis at P and Y–axis at Q. Then find the minimum area of ΔOPQ.

a) hk

b) h2/k

c) k2/h

d) 2hk

Let a line passing through the fixed point (h, k) cut the X–axis at P and Y–axis at Q. Then find the minimum area of ΔOPQ.

a) hk

b) h2/k

c) k2/h

d) 2hk

IIT 1995
1046

Let An be the area bounded by the curve y = (tanx)n and the line
x = 0, y = 0 and . Prove that for  . Hence deduce that
 

Let An be the area bounded by the curve y = (tanx)n and the line
x = 0, y = 0 and . Prove that for  . Hence deduce that
 

IIT 1996
1047

If the curve y = f(x) passes through the point (1, −1) and satisfies the differential equation y(1 + xy) dx = xdy then f(12)

is equal to

a) 25

b) 45

c) 25

d) 45

If the curve y = f(x) passes through the point (1, −1) and satisfies the differential equation y(1 + xy) dx = xdy then f(12)

is equal to

a) 25

b) 45

c) 25

d) 45

IIT 2016
1048

One or more than one correct options

Let f : (0, ∞) → ℝ be a differentiable function such that f(x)=2f(x)x

for all x ∈ (0, ∞) and f(1) ≠ 1. Then

a) limx0+f(1x)=1

b) limx0+xf(1x)=2

c) limx0+x2fx=0

d) |f(x)|2forallx(0,2)

One or more than one correct options

Let f : (0, ∞) → ℝ be a differentiable function such that f(x)=2f(x)x

for all x ∈ (0, ∞) and f(1) ≠ 1. Then

a) limx0+f(1x)=1

b) limx0+xf(1x)=2

c) limx0+x2fx=0

d) |f(x)|2forallx(0,2)

IIT 2016
1049

A curve passes through the point (1,π6)

. Let the slope of the curve at each point (x, y) is yx+sec(yx) , x > 0. Then the equation of the curve is

a) sin(yx)=lnx+12

b) cosec(yx)=lnx+2

c) sec(2yx)=tanx+2

d) cos2yx=lnx+12

A curve passes through the point (1,π6)

. Let the slope of the curve at each point (x, y) is yx+sec(yx) , x > 0. Then the equation of the curve is

a) sin(yx)=lnx+12

b) cosec(yx)=lnx+2

c) sec(2yx)=tanx+2

d) cos2yx=lnx+12

IIT 2013
1050

Let f:[0, 1] → ℝ (the set all real numbers)be a function. Suppose the function is twice differentiable, f(0) = f(1) = 0 and satisfiesf′′(x) – 2f′(x) + f(x) ≥ ex, x ∈ [0, 1]Which of the following is true?

a) f(x)<

b) 12<f(x)<12

c) 14<f(x)<1

d) <f(x)<0

Let f:[0, 1] → ℝ (the set all real numbers)be a function. Suppose the function is twice differentiable, f(0) = f(1) = 0 and satisfiesf′′(x) – 2f′(x) + f(x) ≥ ex, x ∈ [0, 1]Which of the following is true?

a) f(x)<

b) 12<f(x)<12

c) 14<f(x)<1

d) <f(x)<0

IIT 2013

Play Selected  Login to save this search...