Loading [Contrib]/a11y/accessibility-menu.js
All BASICSTANDARDADVANCED

Question(s) from Search: IIT

Search Results Difficulty Solution
1201

In a certain test  students gave wrong answers to at least i questions where i = 1, 2, …, k. No student gave more than k correct answers. Total number of wrong answers given is .  .  .

In a certain test  students gave wrong answers to at least i questions where i = 1, 2, …, k. No student gave more than k correct answers. Total number of wrong answers given is .  .  .

IIT 1982
1202

Multiple choice

If

a) f(x) is increasing on [– 1, 2]

b) f(x) is continuous on [– 1, 3]

c)  does not exist

d) f(x) has maximum value at x = 2

Multiple choice

If

a) f(x) is increasing on [– 1, 2]

b) f(x) is continuous on [– 1, 3]

c)  does not exist

d) f(x) has maximum value at x = 2

IIT 1993
1203

If arg(z) < 0 then arg(−z) – arg(z) is equal to

a) π

b) –π

c) – π/2

d) π/2

If arg(z) < 0 then arg(−z) – arg(z) is equal to

a) π

b) –π

c) – π/2

d) π/2

IIT 2000
1204

Multiple choice

f(x) is a cubic polynomial with f(2) = 18 and f(1) = − 1. Also f(x) has a local maxima at x = − 1 and  has a local minima at x = 0 then

a) The distance between (− 1, 2) and (a, f(a)), where x = a is the point of local minimum, is

b) f(x) is increasing for

c) f(x) has a local minima at x = 1

d) The value of f(0) = 15

Multiple choice

f(x) is a cubic polynomial with f(2) = 18 and f(1) = − 1. Also f(x) has a local maxima at x = − 1 and  has a local minima at x = 0 then

a) The distance between (− 1, 2) and (a, f(a)), where x = a is the point of local minimum, is

b) f(x) is increasing for

c) f(x) has a local minima at x = 1

d) The value of f(0) = 15

IIT 2006
1205

From the point A (0, 3) on the circle , a chord AB is drawn and extended to a point M such that AˆM = 2AˆB. The equation of locus of M is . . . . .

From the point A (0, 3) on the circle , a chord AB is drawn and extended to a point M such that AˆM = 2AˆB. The equation of locus of M is . . . . .

IIT 1986
1206

In Δ ABC the median to the side BC is of length  and divides ∠A into 30° and 45°. Then find the length of side BC.

a) 1

b) 2

c)

d)

In Δ ABC the median to the side BC is of length  and divides ∠A into 30° and 45°. Then find the length of side BC.

a) 1

b) 2

c)

d)

IIT 1985
1207

If f is an even function defined on (−5, 5) then the real values of x satisfying the equation f (x) =  are ……………

a)

b)

c)

d)

If f is an even function defined on (−5, 5) then the real values of x satisfying the equation f (x) =  are ……………

a)

b)

c)

d)

IIT 1996
1208

If ω(≠1) be a cube root of unity and  then the least positive value of n is

a) 2

b) 3

c) 5

d) 6

If ω(≠1) be a cube root of unity and  then the least positive value of n is

a) 2

b) 3

c) 5

d) 6

IIT 2004
1209

A circle is inscribed in an equilateral triangle of side a. The area of any square inscribed in the circle is . . . . .

A circle is inscribed in an equilateral triangle of side a. The area of any square inscribed in the circle is . . . . .

IIT 1994
1210

The number of all possible triplets  such that
 for all x is

a) Zero

b) One

c) Three

d) Infinite

e) None

The number of all possible triplets  such that
 for all x is

a) Zero

b) One

c) Three

d) Infinite

e) None

IIT 1987
1211

A swimmer S is in the sea at a distance d km. from the closest point A on a straight shore. The house of the swimmer is on the shore at a distance L km. from A. He can swim at a speed of
u km/hour and walk at a speed of v km/hr (v > u). At what point on the shore should he land so that he reaches his house in the shortest possible time.

a)

b)

c)

d)

A swimmer S is in the sea at a distance d km. from the closest point A on a straight shore. The house of the swimmer is on the shore at a distance L km. from A. He can swim at a speed of
u km/hour and walk at a speed of v km/hr (v > u). At what point on the shore should he land so that he reaches his house in the shortest possible time.

a)

b)

c)

d)

IIT 1983
1212

Sketch the region bounded by the curves
 and y = |x – 1|
and find its area.

a)

b)

c)

d) 5π + 2

Sketch the region bounded by the curves
 and y = |x – 1|
and find its area.

a)

b)

c)

d) 5π + 2

IIT 1985
1213

Tangents are drawn from the point (17, 7) to the circle .
Statement 1 – The tangents are mutually perpendicular, because

Statement 2 – The locus of points from which mutually perpendicular tangents are drawn to the given circle is .

The question contains statement – 1 (assertion) and statement 2 (reason). Of these statements mark correct choice if

a) Statement 1 and 2 are true. Statement 2 is a correct explanation for statement 1.

b) Statement 1 and 2 are true. Statement 2 is not a correct explanation for statement 1.

c) Statement 1 is true. Statement 2 is false.

d) Statement 1 is false. Statement 2 is true

Tangents are drawn from the point (17, 7) to the circle .
Statement 1 – The tangents are mutually perpendicular, because

Statement 2 – The locus of points from which mutually perpendicular tangents are drawn to the given circle is .

The question contains statement – 1 (assertion) and statement 2 (reason). Of these statements mark correct choice if

a) Statement 1 and 2 are true. Statement 2 is a correct explanation for statement 1.

b) Statement 1 and 2 are true. Statement 2 is not a correct explanation for statement 1.

c) Statement 1 is true. Statement 2 is false.

d) Statement 1 is false. Statement 2 is true

IIT 2007
1214

Let  be the vertices of the triangle. A parallelogram AFDE is drawn with the vertices D, E and F on the line segments BC, CA and AB respectively. Using calculus find the area of the parallelogram.

a)  

b)  

c)  

d)  

Let  be the vertices of the triangle. A parallelogram AFDE is drawn with the vertices D, E and F on the line segments BC, CA and AB respectively. Using calculus find the area of the parallelogram.

a)  

b)  

c)  

d)  

IIT 1986
1215

Two rays in the first quadrant x + y = |a| and ax – y = 1 intersect each other in the interval a ε (a0, ∞). The value of a0 is

Two rays in the first quadrant x + y = |a| and ax – y = 1 intersect each other in the interval a ε (a0, ∞). The value of a0 is

IIT 2006
1216

Find the area of the region bounded by the curve C: y = tanx, tangent drawn to C at  and the X–axis.

a) ln2 – 1

b)

c)

d)

Find the area of the region bounded by the curve C: y = tanx, tangent drawn to C at  and the X–axis.

a) ln2 – 1

b)

c)

d)

IIT 1988
1217

then tan t =

then tan t =

IIT 2006
1218

Sketch the curves and identify the region bounded by
 

Sketch the curves and identify the region bounded by
 

IIT 1991
1219

Consider the following linear equations
ax + by + cz = 0
bx + cy + az = 0
cx + ay + bz = 0
Match the statements/expressions in column 1 with column 2

Column 1

Column2

i. a + b + c ≠ 0 and a2 + b2 + c2 = ab + bc + ca

A. Equations represent planes meeting at only one single point

ii. a + b + c = 0 and a2 + b2 + c2 ≠ ab + bc + ca

B. The equations represent the line x = y = z

iii. a + b + c ≠ 0 and a2 + b2 + c2 ≠ ab + bc + ca

C. The equations represent identical planes

iv. a + b + c = 0 and a2 + b2 + c2 = ab + bc + ca

D.The equations represent the whole of the three dimensional space

Consider the following linear equations
ax + by + cz = 0
bx + cy + az = 0
cx + ay + bz = 0
Match the statements/expressions in column 1 with column 2

Column 1

Column2

i. a + b + c ≠ 0 and a2 + b2 + c2 = ab + bc + ca

A. Equations represent planes meeting at only one single point

ii. a + b + c = 0 and a2 + b2 + c2 ≠ ab + bc + ca

B. The equations represent the line x = y = z

iii. a + b + c ≠ 0 and a2 + b2 + c2 ≠ ab + bc + ca

C. The equations represent identical planes

iv. a + b + c = 0 and a2 + b2 + c2 = ab + bc + ca

D.The equations represent the whole of the three dimensional space

IIT 2007
1220

The domain of the function y(x) given by the equation  is

a) 0 < x ≤ 1

b) 0 ≤ x ≤ 1

c)  < x ≤ 0

d)  < x < 1

The domain of the function y(x) given by the equation  is

a) 0 < x ≤ 1

b) 0 ≤ x ≤ 1

c)  < x ≤ 0

d)  < x < 1

IIT 2000
1221

If A = , 6A-1 = A2 + cA + dI

then (c, d ) is

a) (−11, 6)

b) (−6, 11)

c)  (6, 11 )

d)  (11, 6 )

If A = , 6A-1 = A2 + cA + dI

then (c, d ) is

a) (−11, 6)

b) (−6, 11)

c)  (6, 11 )

d)  (11, 6 )

IIT 2005
1222

Prove that

Prove that

IIT 1997
1223

Tangent at a point P1 (other than (10, 0)) on the curve y = x3 meets the curve again at P2. The tangent at P2 meets the curve at P3 and so on. Show that the abscissae of P1, P2, P3, .  .  . , Pn form a Geometric Progression. Also find the ratio .

a) 32

b) 16

c)

d)

Tangent at a point P1 (other than (10, 0)) on the curve y = x3 meets the curve again at P2. The tangent at P2 meets the curve at P3 and so on. Show that the abscissae of P1, P2, P3, .  .  . , Pn form a Geometric Progression. Also find the ratio .

a) 32

b) 16

c)

d)

IIT 1993
1224

In what ratio does the X–axis divide the area of the region bounded by the parabolas y = 4x – x2 and y = x2 – x

a) 1:4

b) 21:1

c) 21:4

d) 3:4

In what ratio does the X–axis divide the area of the region bounded by the parabolas y = 4x – x2 and y = x2 – x

a) 1:4

b) 21:1

c) 21:4

d) 3:4

IIT 1994
1225

Let C1 and C2, be respectively, the parabolas  and  . Let P be any point on C1 and Q be any point on C2. Let P1 and Q1 be the reflections of P and Q respectively with respect to y = x . Prove that P1 lies on C2 and Q1 lies on C1 and  . Hence or otherwise determine points P2 and Q2 on the parabolas C1 and C2 respectively such that  for all points (P, Q) with P on C1 and Q on C2 .

Let C1 and C2, be respectively, the parabolas  and  . Let P be any point on C1 and Q be any point on C2. Let P1 and Q1 be the reflections of P and Q respectively with respect to y = x . Prove that P1 lies on C2 and Q1 lies on C1 and  . Hence or otherwise determine points P2 and Q2 on the parabolas C1 and C2 respectively such that  for all points (P, Q) with P on C1 and Q on C2 .

IIT 2000

Play Selected  Login to save this search...