1076 |
The product of r consecutive natural numbers is divisible by r! a) True b) False
The product of r consecutive natural numbers is divisible by r! a) True b) False
|
IIT 1985 |
|
1077 |
The area bounded by the curve y = f(x), the X–axis and the ordinates x = 1, x = b is (b – 1) sin (3b + 4). Then f(x) is a) (x – 1) cos (3x + b) b) sin (3x + 4) c) sin (3x + 4) + 3 (x – 1) cos (3x + 4) d) none of these
The area bounded by the curve y = f(x), the X–axis and the ordinates x = 1, x = b is (b – 1) sin (3b + 4). Then f(x) is a) (x – 1) cos (3x + b) b) sin (3x + 4) c) sin (3x + 4) + 3 (x – 1) cos (3x + 4) d) none of these
|
IIT 2005 |
|
1078 |
The sum where equals a) i b) i – 1 c) – i d) 0
The sum where equals a) i b) i – 1 c) – i d) 0
|
IIT 1998 |
|
1079 |
Fill in the blank The value of f (x) = lies in the interval ……………. a)  b)  c)  d) 
Fill in the blank The value of f (x) = lies in the interval ……………. a)  b)  c)  d) 
|
IIT 1983 |
|
1080 |
Find the area bounded by the curve x2 = 4y and the straight line x = 4y – 2. a) 3/2 b) 3/4 c) 9/4 d) 9/8
Find the area bounded by the curve x2 = 4y and the straight line x = 4y – 2. a) 3/2 b) 3/4 c) 9/4 d) 9/8
|
IIT 1981 |
|
1081 |
If f(x) and g(x) are differentiable functions for 0 ≤ x ≤ 1 such that f(0) = 2, g(0) = 0, f(1) = 6, g(1) = 2 then show that there exists c satisfying 0 < c < 1 and . a) 0 < c < 1 and  b) 0 < c < 1 and  c) 0 < c < 1 and  d) 0 < c < 1 and 
If f(x) and g(x) are differentiable functions for 0 ≤ x ≤ 1 such that f(0) = 2, g(0) = 0, f(1) = 6, g(1) = 2 then show that there exists c satisfying 0 < c < 1 and . a) 0 < c < 1 and  b) 0 < c < 1 and  c) 0 < c < 1 and  d) 0 < c < 1 and 
|
IIT 1982 |
|
1082 |
Let a > 0, b > 0, c > 0 then both the roots of the equation a) are real and positive b) have negative real parts c) have positive real parts d) none of these
Let a > 0, b > 0, c > 0 then both the roots of the equation a) are real and positive b) have negative real parts c) have positive real parts d) none of these
|
IIT 1979 |
|
1083 |
If f(x) is a continuous function defined for 1 ≤ x ≤ 3. If f(x) takes rational values for all x and f(2) = 10 then f(1.5) = . . . . a) 2 b) 5 c) 10 d) 20
If f(x) is a continuous function defined for 1 ≤ x ≤ 3. If f(x) takes rational values for all x and f(2) = 10 then f(1.5) = . . . . a) 2 b) 5 c) 10 d) 20
|
IIT 1997 |
|
1084 |
If x, y, z are real and distinct then is always a) Non – negative b) Non – positive c) Zero d) None of these
If x, y, z are real and distinct then is always a) Non – negative b) Non – positive c) Zero d) None of these
|
IIT 2005 |
|
1085 |
Match the following Let [x] denote the greatest integer less than or equal to x Column 1 | Column 2 | i) x|x| | A)continuous in  | ii)  | B)Differentiable in  | iii) x + [x] | C)Steadily increasing in  | iv) |x – 1| + |x + 1| | D) Not differentiable at least at one point in  | a) (i)→ A, B, C, (ii)→ A, D, (iii)→ C, D, (iv)→ A, B b) (i)→ A, (ii)→ A, (iii)→ C, (iv)→ B c) (i)→ B, (ii)→ D, (iii)→ C, (iv)→ A d) (i)→ A, B, (ii)→ A, D, (iii)→ C, D, (iv)→ B
Match the following Let [x] denote the greatest integer less than or equal to x Column 1 | Column 2 | i) x|x| | A)continuous in  | ii)  | B)Differentiable in  | iii) x + [x] | C)Steadily increasing in  | iv) |x – 1| + |x + 1| | D) Not differentiable at least at one point in  | a) (i)→ A, B, C, (ii)→ A, D, (iii)→ C, D, (iv)→ A, B b) (i)→ A, (ii)→ A, (iii)→ C, (iv)→ B c) (i)→ B, (ii)→ D, (iii)→ C, (iv)→ A d) (i)→ A, B, (ii)→ A, D, (iii)→ C, D, (iv)→ B
|
IIT 2007 |
|
1086 |
(One or more than one correct answer) If are complex numbers such that and then the pair of complex numbers and satisfy a)  b)  c)  d) None of these
|
IIT 1985 |
|
1087 |
Let ABCD be a square with side of length 2 units. C2 is the circle through the vertices A, B, C, D and C1 is the circle touching all the sides of the square ABCD. L is a line through A. A line M is drawn through A parallel to BD. Point S moves such that the distance from the line BD and the vertex A are equal. If the locus of S cuts M at T2 and T3 and AC at T1, then find the area of △T1T2T3.
Let ABCD be a square with side of length 2 units. C2 is the circle through the vertices A, B, C, D and C1 is the circle touching all the sides of the square ABCD. L is a line through A. A line M is drawn through A parallel to BD. Point S moves such that the distance from the line BD and the vertex A are equal. If the locus of S cuts M at T2 and T3 and AC at T1, then find the area of △T1T2T3.
|
IIT 2006 |
|
1088 |
Express in the form A + iB a)  b)  c)  d) 
Express in the form A + iB a)  b)  c)  d) 
|
IIT 1979 |
|
1089 |
Find the area bounded by the curves a) 1/6 b) 1/3 c) π d) 
Find the area bounded by the curves a) 1/6 b) 1/3 c) π d) 
|
IIT 1986 |
|
1090 |
If the line x – 1 = 0 is the directrix of the parabola y2 – kx + 8 = 0, then one of the values of k is a)  b) 8 c) 4 d) 
If the line x – 1 = 0 is the directrix of the parabola y2 – kx + 8 = 0, then one of the values of k is a)  b) 8 c) 4 d) 
|
IIT 2000 |
|
1091 |
Find the area bounded by the curves x2 + y2 = 25, 4y = |4 – x2| and x = 0 above the X–axis. a)  b)  c)  d) 
Find the area bounded by the curves x2 + y2 = 25, 4y = |4 – x2| and x = 0 above the X–axis. a)  b)  c)  d) 
|
IIT 1987 |
|
1092 |
If sinA sinB sinC + cosA cosB = 1then the value of sinC is
If sinA sinB sinC + cosA cosB = 1then the value of sinC is
|
IIT 2006 |
|
1093 |
Let = 10 + 6i and . If z is a complex number such that argument of is then prove that .
|
IIT 1990 |
|
1094 |
Compute the area of the region bounded by the curves y = exlnx and  a)  b)  c)  d) 
Compute the area of the region bounded by the curves y = exlnx and  a)  b)  c)  d) 
|
IIT 1990 |
|
1095 |
A plane passes through (1, −2, 1) and is perpendicular to the two planes and The distance of the plane from the point (1, 2, 2) is.
A plane passes through (1, −2, 1) and is perpendicular to the two planes and The distance of the plane from the point (1, 2, 2) is.
|
IIT 2006 |
|
1096 |
What normal to the curve y = x2 forms the shortest normal? a)  b)  c)  d) y = x + 1
What normal to the curve y = x2 forms the shortest normal? a)  b)  c)  d) y = x + 1
|
IIT 1992 |
|
1097 |
(Multiple choices) The value of θ lying between θ = 0 and θ = and satisfying the equation = 0 are a)  b)  c)  d) 
(Multiple choices) The value of θ lying between θ = 0 and θ = and satisfying the equation = 0 are a)  b)  c)  d) 
|
IIT 1988 |
|
1098 |
Let a complex number α, α ≠ 1, be root of the equation where p and q are distinct primes. Show that either or , but not together.
|
IIT 2002 |
|
1099 |
The circle x2 + y2 = 1 cuts the X–axis at P and Q. Another circle with centre at Q and variable radius intersects the first circle at R above the X–axis and the line segment PQ at S. Find the maximum area of ΔQRS. a)  b)  c)  d) 
The circle x2 + y2 = 1 cuts the X–axis at P and Q. Another circle with centre at Q and variable radius intersects the first circle at R above the X–axis and the line segment PQ at S. Find the maximum area of ΔQRS. a)  b)  c)  d) 
|
IIT 1994 |
|
1100 |
From a point A common tangents are drawn to the circle and the parabola . Find the area of the quadrilateral formed by the common tangents drawn from A and the chords of contact of the circle and the parabola.
From a point A common tangents are drawn to the circle and the parabola . Find the area of the quadrilateral formed by the common tangents drawn from A and the chords of contact of the circle and the parabola.
|
IIT 1996 |
|