Loading [MathJax]/extensions/MathML/content-mathml.js
All BASICSTANDARDADVANCED

Question(s) from Search: IIT

Search Results Difficulty Solution
1076

The product of r consecutive natural numbers is divisible by r!

a) True

b) False

The product of r consecutive natural numbers is divisible by r!

a) True

b) False

IIT 1985
1077

The area bounded by the curve y = f(x), the X–axis and the ordinates x = 1, x = b is (b – 1) sin (3b + 4). Then f(x) is

a) (x – 1) cos (3x + b)

b) sin (3x + 4)

c) sin (3x + 4) + 3 (x – 1) cos (3x + 4)

d) none of these

The area bounded by the curve y = f(x), the X–axis and the ordinates x = 1, x = b is (b – 1) sin (3b + 4). Then f(x) is

a) (x – 1) cos (3x + b)

b) sin (3x + 4)

c) sin (3x + 4) + 3 (x – 1) cos (3x + 4)

d) none of these

IIT 2005
1078

The sum  where  equals

a) i

b) i – 1

c) – i

d) 0

The sum  where  equals

a) i

b) i – 1

c) – i

d) 0

IIT 1998
1079

Fill in the blank

The value of f (x) =  lies in the interval …………….

a)

b)

c)

d)

Fill in the blank

The value of f (x) =  lies in the interval …………….

a)

b)

c)

d)

IIT 1983
1080

Find the area bounded by the curve x2 = 4y and the straight line
x = 4y – 2.

a) 3/2

b) 3/4

c) 9/4

d) 9/8

Find the area bounded by the curve x2 = 4y and the straight line
x = 4y – 2.

a) 3/2

b) 3/4

c) 9/4

d) 9/8

IIT 1981
1081

If f(x) and g(x) are differentiable functions for 0 ≤ x ≤ 1 such that f(0) = 2, g(0) = 0, f(1) = 6, g(1) = 2 then show that there exists c satisfying 0 < c < 1 and .

a) 0 < c < 1 and

b) 0 < c < 1 and

c) 0 < c < 1 and

d) 0 < c < 1 and

If f(x) and g(x) are differentiable functions for 0 ≤ x ≤ 1 such that f(0) = 2, g(0) = 0, f(1) = 6, g(1) = 2 then show that there exists c satisfying 0 < c < 1 and .

a) 0 < c < 1 and

b) 0 < c < 1 and

c) 0 < c < 1 and

d) 0 < c < 1 and

IIT 1982
1082

Let a > 0, b > 0, c > 0 then both the roots of the equation  

a) are real and positive

b) have negative real parts

c) have positive real parts

d) none of these

Let a > 0, b > 0, c > 0 then both the roots of the equation  

a) are real and positive

b) have negative real parts

c) have positive real parts

d) none of these

IIT 1979
1083

If f(x) is a continuous function defined for 1 ≤ x ≤ 3. If f(x) takes rational values for all x and f(2) = 10 then f(1.5) = .  .  .  .

a) 2

b) 5

c) 10

d) 20

If f(x) is a continuous function defined for 1 ≤ x ≤ 3. If f(x) takes rational values for all x and f(2) = 10 then f(1.5) = .  .  .  .

a) 2

b) 5

c) 10

d) 20

IIT 1997
1084

If x, y, z are real and distinct then  is always

a) Non – negative

b) Non – positive

c) Zero

d) None of these

If x, y, z are real and distinct then  is always

a) Non – negative

b) Non – positive

c) Zero

d) None of these

IIT 2005
1085

Match the following
Let [x] denote the greatest integer less than or equal to x

Column 1

Column 2

i) x|x|

A)continuous in

ii)

B)Differentiable in

iii) x + [x]

C)Steadily increasing in

iv) |x – 1| + |x + 1|

D) Not differentiable at least at one point in

a) (i)→ A, B, C, (ii)→ A, D, (iii)→ C, D, (iv)→ A, B

b) (i)→ A, (ii)→ A, (iii)→ C, (iv)→ B

c) (i)→ B, (ii)→ D, (iii)→ C, (iv)→ A

d) (i)→ A, B, (ii)→ A, D, (iii)→ C, D, (iv)→ B

Match the following
Let [x] denote the greatest integer less than or equal to x

Column 1

Column 2

i) x|x|

A)continuous in

ii)

B)Differentiable in

iii) x + [x]

C)Steadily increasing in

iv) |x – 1| + |x + 1|

D) Not differentiable at least at one point in

a) (i)→ A, B, C, (ii)→ A, D, (iii)→ C, D, (iv)→ A, B

b) (i)→ A, (ii)→ A, (iii)→ C, (iv)→ B

c) (i)→ B, (ii)→ D, (iii)→ C, (iv)→ A

d) (i)→ A, B, (ii)→ A, D, (iii)→ C, D, (iv)→ B

IIT 2007
1086

(One or more than one correct answer)
If  are complex numbers such that  and  then the pair of complex numbers  and  satisfy

a)

b)

c)

d) None of these

(One or more than one correct answer)
If  are complex numbers such that  and  then the pair of complex numbers  and  satisfy

a)

b)

c)

d) None of these

IIT 1985
1087

Let ABCD be a square with side of length 2 units. C2 is the circle through the vertices A, B, C, D and C1 is the circle touching all the sides of the square ABCD. L is a line through A.

A line M is drawn through A parallel to BD. Point S moves such that the distance from the line BD and the vertex A are equal. If the locus of S cuts M at T2 and T3 and AC at T1, then find the area of △T1T2T3.

Let ABCD be a square with side of length 2 units. C2 is the circle through the vertices A, B, C, D and C1 is the circle touching all the sides of the square ABCD. L is a line through A.

A line M is drawn through A parallel to BD. Point S moves such that the distance from the line BD and the vertex A are equal. If the locus of S cuts M at T2 and T3 and AC at T1, then find the area of △T1T2T3.

IIT 2006
1088

Express  in the form A + iB

a)

b)

c)

d)

Express  in the form A + iB

a)

b)

c)

d)

IIT 1979
1089

Find the area bounded by the curves
 

a) 1/6

b) 1/3

c) π

d)

Find the area bounded by the curves
 

a) 1/6

b) 1/3

c) π

d)

IIT 1986
1090

If the line x – 1 = 0 is the directrix of the parabola y2 – kx + 8 = 0, then one of the values of k is

a)

b) 8

c) 4

d)

If the line x – 1 = 0 is the directrix of the parabola y2 – kx + 8 = 0, then one of the values of k is

a)

b) 8

c) 4

d)

IIT 2000
1091

Find the area bounded by the curves x2 + y2 = 25, 4y = |4 – x2| and x = 0 above the X–axis.

a)

b)

c)

d)

Find the area bounded by the curves x2 + y2 = 25, 4y = |4 – x2| and x = 0 above the X–axis.

a)

b)

c)

d)

IIT 1987
1092

If sinA sinB sinC + cosA cosB = 1then the value of sinC is

If sinA sinB sinC + cosA cosB = 1then the value of sinC is

IIT 2006
1093

Let = 10 + 6i and  . If z is a complex number such that argument of  is  then prove that  .

Let = 10 + 6i and  . If z is a complex number such that argument of  is  then prove that  .

IIT 1990
1094

Compute the area of the region bounded by the curves
y = exlnx and

a)

b)

c)

d)

Compute the area of the region bounded by the curves
y = exlnx and

a)

b)

c)

d)

IIT 1990
1095

A plane passes through (1, −2, 1) and is perpendicular to the two planes  and  The distance of the plane from the point (1, 2, 2) is.

A plane passes through (1, −2, 1) and is perpendicular to the two planes  and  The distance of the plane from the point (1, 2, 2) is.

IIT 2006
1096

What normal to the curve y = x2 forms the shortest normal?

a)

b)

c)

d) y = x + 1

What normal to the curve y = x2 forms the shortest normal?

a)

b)

c)

d) y = x + 1

IIT 1992
1097

(Multiple choices)
The value of θ lying between θ = 0 and θ =  and satisfying the equation
 = 0 are

a)

b)

c)

d)

(Multiple choices)
The value of θ lying between θ = 0 and θ =  and satisfying the equation
 = 0 are

a)

b)

c)

d)

IIT 1988
1098

Let a complex number α, α ≠ 1, be root of the equation  where p and q are distinct primes. Show that either  or , but not together.

Let a complex number α, α ≠ 1, be root of the equation  where p and q are distinct primes. Show that either  or , but not together.

IIT 2002
1099

The circle x2 + y2 = 1 cuts the X–axis at P and Q. Another circle with centre at Q and variable radius intersects the first circle at R above the X–axis and the line segment PQ at S. Find the maximum area of ΔQRS.

a)

b)

c)

d)

The circle x2 + y2 = 1 cuts the X–axis at P and Q. Another circle with centre at Q and variable radius intersects the first circle at R above the X–axis and the line segment PQ at S. Find the maximum area of ΔQRS.

a)

b)

c)

d)

IIT 1994
1100

From a point A common tangents are drawn to the circle  and the parabola . Find the area of the quadrilateral formed by the common tangents drawn from A and the chords of contact of the circle and the parabola.

From a point A common tangents are drawn to the circle  and the parabola . Find the area of the quadrilateral formed by the common tangents drawn from A and the chords of contact of the circle and the parabola.

IIT 1996

Play Selected  Login to save this search...