751 |
The area of a triangle whose vertices are is
The area of a triangle whose vertices are is
|
IIT 1983 |
|
752 |
The parameter on which the value of the determinant Δ =  does not depend upon is a) a b) p c) d d) x
The parameter on which the value of the determinant Δ =  does not depend upon is a) a b) p c) d d) x
|
IIT 1997 |
|
753 |
Consider the lines ; The unit vector perpendicular to both L1 and L2 is a)  b)  c)  d) 
Consider the lines ; The unit vector perpendicular to both L1 and L2 is a)  b)  c)  d) 
|
IIT 2008 |
|
754 |
If b > a then the equation ( x – a ) ( x – b ) 1 = 0 has a) Both roots in [ a, b ] b) Both roots in ( , a ) c) Both roots in ( ) d) One root in ( , a ) and other in ( )
If b > a then the equation ( x – a ) ( x – b ) 1 = 0 has a) Both roots in [ a, b ] b) Both roots in ( , a ) c) Both roots in ( ) d) One root in ( , a ) and other in ( )
|
IIT 2000 |
|
755 |
For what value of m does the system of equations 3x + my = m, 2x − 5y = 20 have a solution satisfying the condition x > 0, y > 0. a) m (−∞, ∞) b) m (−∞, −15) ∪ (30, ∞) c)  d) 
For what value of m does the system of equations 3x + my = m, 2x − 5y = 20 have a solution satisfying the condition x > 0, y > 0. a) m (−∞, ∞) b) m (−∞, −15) ∪ (30, ∞) c)  d) 
|
IIT 1979 |
|
756 |
If α is a repeated root of a quadratic equation f(x) = 0 and A(x), B(x), C(x) be polynomials of degree 3, 4, 5 respectively, Then show that is divisible by f(x) where prime denotes the derivatives.
If α is a repeated root of a quadratic equation f(x) = 0 and A(x), B(x), C(x) be polynomials of degree 3, 4, 5 respectively, Then show that is divisible by f(x) where prime denotes the derivatives.
|
IIT 1984 |
|
757 |
The differential equation determines a family of circles with a) Variable radii and a fixed centre ( 0, 1) b) Variable radii and a fixed centre ( 0, -1) c) Fixed radius and a variable centre along the X-axis d) Fixed radius and a variable centre along the Y-axis
The differential equation determines a family of circles with a) Variable radii and a fixed centre ( 0, 1) b) Variable radii and a fixed centre ( 0, -1) c) Fixed radius and a variable centre along the X-axis d) Fixed radius and a variable centre along the Y-axis
|
IIT 2007 |
|
758 |
Prove that for all values of θ = 0
Prove that for all values of θ = 0
|
IIT 2000 |
|
759 |
If and , then show that
|
IIT 1989 |
|
760 |
A = , B = , U = , V =  If AX = U has infinitely many solutions, prove that BX = V has no unique solution. Also prove that if afd ≠ 0 then BX = V has no solution. X is a vector.
|
IIT 2004 |
|
761 |
If , for every real number x, then the minimum value of f a) does not exist because f is unbounded b) is not attained even though f is bounded c) is equal to 1 d) is equal to –1
If , for every real number x, then the minimum value of f a) does not exist because f is unbounded b) is not attained even though f is bounded c) is equal to 1 d) is equal to –1
|
IIT 1998 |
|
762 |
Let u (x) and v (x) satisfy the differential equations and where p (x), f (x) and g (x) are continuous functions. If u (x1) > v (x1) for some x1 and f (x) > g (x) for all x > x1, prove that at any point (x, y) where x > x1 does not satisfy the equations y = u (x) and y = v (x)
|
IIT 1997 |
|
763 |
The function is defined by then is a)  b)  c)  d) None of these
The function is defined by then is a)  b)  c)  d) None of these
|
IIT 1999 |
|
764 |
is
is
|
IIT 2006 |
|
765 |
Suppose for x ≥ . If g(x) is the function whose graph is the reflection of f(x) with respect to the line y = x then g(x) equals a)  b)  c)  d) 
Suppose for x ≥ . If g(x) is the function whose graph is the reflection of f(x) with respect to the line y = x then g(x) equals a)  b)  c)  d) 
|
IIT 2002 |
|
766 |
Domain of definition of the function for real values of x is a)  b)  c)  d) 
Domain of definition of the function for real values of x is a)  b)  c)  d) 
|
IIT 2003 |
|
767 |
Let λ and α be real. Find the set of all values of λ for which the system of linear equations has a non-trivial solution. For λ = 1 find the value of α.
|
IIT 1993 |
|
768 |
Let f be a one–one function with domain {x, y, z} and range {1, 2, 3}. It is given that exactly one of the following statements is true and remaining statements are false f (1) = 1, f (y) ≠ 1, f (z) ≠ 2. Determine
Let f be a one–one function with domain {x, y, z} and range {1, 2, 3}. It is given that exactly one of the following statements is true and remaining statements are false f (1) = 1, f (y) ≠ 1, f (z) ≠ 2. Determine
|
IIT 1982 |
|
769 |
The value of . Given that a, x, y, z, b are in Arithmetic Progression while the value of . If a, x, y, z, b are in Harmonic Progression then find a and b.
The value of . Given that a, x, y, z, b are in Arithmetic Progression while the value of . If a, x, y, z, b are in Harmonic Progression then find a and b.
|
IIT 1978 |
|
770 |
Let {x} and [x] denote the fractional and integral part of a real number x respectively. Solve 4{x} = x + [x]
Let {x} and [x] denote the fractional and integral part of a real number x respectively. Solve 4{x} = x + [x]
|
IIT 1994 |
|
771 |
If S1, S2, . . . .,Sn are the sums of infinite geometric series whose first terms are 1, 2, 3, . . ., n and whose common ratios are respectively, then find the value of 
If S1, S2, . . . .,Sn are the sums of infinite geometric series whose first terms are 1, 2, 3, . . ., n and whose common ratios are respectively, then find the value of 
|
IIT 1991 |
|
772 |
If are three non–coplanar vectors, then equals a) 0 b)  c)  d) 
If are three non–coplanar vectors, then equals a) 0 b)  c)  d) 
|
IIT 1995 |
|
773 |
Let a, b are real positive numbers. If a, A1, A2, b are in Arithmetic Progression, a, G1, G2, b are in Geometric Progression and a, H1, H2, b are in Harmonic Progression show that 
Let a, b are real positive numbers. If a, A1, A2, b are in Arithmetic Progression, a, G1, G2, b are in Geometric Progression and a, H1, H2, b are in Harmonic Progression show that 
|
IIT 2002 |
|
774 |
a) True b) False
a) True b) False
|
IIT 1978 |
|
775 |
Multiple choice Let be three vectors. A vector in the plane of b and c whose projection on a is of magnitude is a)  b)  c)  d) 
Multiple choice Let be three vectors. A vector in the plane of b and c whose projection on a is of magnitude is a)  b)  c)  d) 
|
IIT 1993 |
|